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Abstract

How does learning about proposer power affect agents’ ability to compromise? We

study a dynamic multi-issue bargaining game between a proposer and a responder. Issues

arrive at random, and with each new issue, the proposer makes a proposal, which the re-

sponder either accepts or rejects. In case of rejection, the proposer can attempt to force the

issue and implement his ideal and will succeed with some probability that is a function of

the proposer’s unobserved ability. Both players learn about the proposer’s ability over time

as new issues arise. We show that there is conflict when the belief about the proposer is

either high or low, but that compromise can occur in an intermediate region of beliefs. This

is driven by both players’ incentive to avoid learning in that region. We extend the model to

include the possibility of difficult issues arising in which no compromise is possible. Dif-

ficult issues can disrupt a previously established compromise, forcing conflict for issues in

which compromise was previously possible (easy issues). The reason conflict ensues is that

the responder learns the proposer is weak and no longer has an incentive to compromise,

even on easy issues.
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1 Introduction

The impact of agenda setters, such as a president, a prime minister, or a party leader in the

process of political decision making has been the focus of research at least since the seminal

contribution of Romer and Rosenthal (1979). In their paper, the power of the agenda setter is

derived from a first-mover advantage. In this paper we investigate another source of power for

an agenda setter, the ability to put pressure, cajole or lobby others to support a policy proposal.

In other words, to force the issue. However, agenda setters may differ in their abilities to force

an issue, and both responder and the agenda setter may only learn about the agenda setter’s

skills in the process of contentious bargaining battles.

The skill to convince is undoubtedly an important characteristic of a successful leader. For

example, president Lincoln’s ability to get the 13th amendment passed in the House, was due

to his skills and active involvement in getting the necessary votes. More recently, President

Clinton was able to establish good relationships with Republican legislators that helped him to

get some of his agenda passed even after the Gingrich revolution. On the other hand, President

Obama was often criticized for his frosty relationships with congress, which was at least in part

responsible for the lack or passage of an immigration bill. Outside the political arena, there are

examples of individuals in organizations who have to bargain over multiple issues over a period

of time, with a new issue arising when one issue is closed. One such example is a dean in an

academic institution making a proposal to faculty. At each meeting, a new curriculum change,

hire, promotion, or other issue may arise and must be bargained over. Other examples include

labor unions and firms or husband and wife.

In all these examples, some issues appear to be concluded relatively quickly with a com-

promise outcome, while for others conflict (possibly lengthy) may ensue with an uncertain

outcome. In some situations, conflict may arise where it was previously not expected causing

participants to wonder “why are we fighting about this?”. We provide a first step to capture

the dynamics of such repeated bargaining situations. The key assumption in the model is that

upon rejection of a proposal, the proposer has an opportunity to force the issue. The power of

the agenda setter is captured by his ability to force the issue (through pressure, deal-making

or “going above the responder’s head”). The ability of the proposer to force the issue may be

unknown ex-ante to both the proposer and the responder, but with each new conflict, there is

learning about the proposer’s power. A tough proposer will succeed in forcing the issue with

some probability, while a soft proposer will never be successful. We study a bargaining envi-

ronment with learning about the proposer’s bargaining ability and ask when we should expect

to see conflict or compromise in bargaining.
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To keep the analysis tractable we consider a stylized model in which each issue has three

possible outcomes, the status quo, the proper’s ideal, and a compromise proposal. The com-

promise outcome is the second most preferred for both players, and the responder prefers the

status quo to the compromise. Time is continuous and a new issue arises with some probabil-

ity in an interval of time. In the spirit of the dynamic bargaining literature (Rubinstein, 1982;

Kalandrakis, 2004; Bowen and Zahran, 2012; Bowen et al., 2014; Dziuda and Loeper, 2016),

we consider that there are multiple rounds in which a decision must be taken. Unlike much

of the recent dynamic legislative bargaining literature we assume that in each round there is a

new issue to decide (such as a new faculty to hire), so the status quo position of issues are not

linked intertemporally. Once the issue arises, the proposer can immediately make a proposal.

The responder then has a chance to accept or reject. If the responder rejects the proposal, then

the proposer can choose to force the issue.

Learning about whether the proposer has the ability to successfully force the issue (or be

tough) is modeled in the spirit of the exponential bandit literature as in Keller et al. (2005).

There is a common prior probability that the proposer is tough. While the proposer is attempting

to force the issue the common belief that the proposer is tough is decreasing as long as he has not

successfully forced the issued. If the proposer succeeds in forcing the issue (by implementing

his ideal), then players know that he is tough for certain and the belief jumps to one. New issues

arise at random times so an issue can be abandoned before the proposer observes a success.

We show in this setting that there is a Markov perfect equilibrium in which players choose

to compromise on issues for an intermediate range of beliefs. That is, compromise is possible if

the proposer is neither too strong, nor too weak. As is standard in the bandit literature, the upper

bound on the belief is driven by the proposers “exploitation” versus “exploration” tradeoff. The

responder is known to accept the compromise when the proposer’s type is high, and thus the

compromise is endogenously a “safe” alternative. The safe alternative may be exploited, or the

risky alternative (proposing his ideal) may be explored.

The lower bound on the belief is driven by the responder’s incentives. When the proposer is

sufficiently weak, the responder knows that the likelihood of the status quo staying in place is

very high when the proposer attempts to force the issue. Thus the responder never accepts the

compromise. The proposer, knowing that the compromise will be rejected, proposes his ideal

because he has nothing to lose. He has some small probability of implementing his ideal and

discovering that he is strong. When the belief that the proposer is tough is sufficiently high,

the responder prefers not to risk the proposer’s ideal being implemented and learning that the

proposer is good.

This leads to the following dynamics. If at the beginning of the game the proposer is very
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strong (i.e., the belief that he is tough is high), then conflict will ensue over issues until the belief

about the proposer’s toughness drifts sufficiently low. When the belief becomes low enough it

enters the compromise interval and the proposer chooses to compromise. If at the beginning

of the game the proposer is very weak (i.e., belief that he is tough is low), then there will be

perpetual conflict. The responder will never accept a compromise proposal knowing that the

proposer has a very low probability of successfully forcing an issue. The proposer, knowing

this, forces every issue, because he has nothing to lose – there is still a small probability that he

is successful.

We extend the model to include the possibility that a “difficult” issue arises with some small

probability. A difficult issue is one for which compromise is not an option. Either the proposer

avoids conflict by proposing the status quo, or the proposer forces his ideal. It is assumed that

difficult issues arise with sufficiently small probability. Otherwise, issues are as before and can

take three positions – status quo, compromise and proposer’s ideal. We now call these issues

where compromise is possible “easy”. We show in this extended model that two equilibria exist.

In both equilibria compromise is implemented for an intermediate interval of beliefs when the

issue is easy. For difficult issues, the strategies and outcomes differ qualitatively between the

two equilibria.

We refer to the first equilibrium as the “conflict equilibrium”. In the conflict equilibrium the

proposer always proposes his ideal so there is always conflict (and learning) when a difficult

issue arrives. Thus even if beliefs are in the interval where compromise is implemented for easy

issues, in the long run they drift sufficiently low that conflict ensues even for easy issues. This

helps to explain why conflict may arise for issues that may have once been resolvable. The

reduction in proposer power leads the responder to no longer wish to compromise.

We call the second equilibrium “avoiding the issue". In this equilibrium, the proposer pro-

poses his ideal when a difficult issue arises for all values of beliefs except the lower bound of

the compromise interval. The dynamics in this equilibrium is quite different from the first. If

beliefs are in the compromise interval, they will drift down with each difficult issue, but when

they hit the compromise boundary there is no further conflict. One can interpret this as the

responder “avoiding the issue". Once the boundary is hit there is no conflict on either difficult

or easy issues.

Literature Review
There is an extensive literature on dynamic legislative bargaining. As in Diermeier and

Fong (2011) (and Romer and Rosenthal (1979) in a static setting) we assume that there is a

designated agenda setter. This assumption allows us to focus on learning about the type of only

one of the players. In contrast, Baron and Ferejohn (1989) and Baron and Ferejohn (1987)
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consider the case of a decentralized committee in which each member can be selected to be the

agenda setter. These models have been extended to multidimensional policy spaces by Banks

and Duggan (2000) and Banks and Duggan (2006), and to sequential bargaining over different

policies (c.f., Baron (1996), Kalandrakis (2004), Duggan and Kalandrakis (2012)). To link

policies over time, these models assume that once a policy is enacted it determines the status

quo point for the next period. In our model the status quo is exogenous and fixed, but the belief

about the proposer’s type links issues through time. This allows us to clearly identify the effects

of learning in the bargaining process.

The choice between a risky proposal (the proposer’s ideal) and a safe alternative (the com-

promise) is modeled as a bandit problem in the spirit of Keller et al. (2005). In this sense,

this project is related to the growing literature on collective experimentation and voting rules,

including Strulovici (2010), and Anesi and Bowen (ming). Like ours, these papers study the

interaction between collective choice and experimentation, however, what is uncertain in our

paper is the bargaining ability of the proposer. In equilibrium, the proposer’s ideal action can

be considered the risky alternative, while the compromise is the safe alternative. Interestingly,

the proposer and responder have opposing incentives to experiment. This generates the possi-

bility for an intermediate interval of beliefs such that the safe alternative is implemented. In this

interval experimentation is too risky for the proposer, while not conveying enough information

for the responder to trigger it. Other papers considering policy experimentation and collective

choice include Majumdar and Mukand (2004), Volden et al. (2008), Cai and Treisman (2009),

Callander (2011), Callander and Hummel (2014), Millner et al. (2014), Hirsch (2016) and Freer

et al. (2018). Callander and Hummel (2014) consider a case in which a political party preemp-

tively experiments on policy to affect future decisions of the opposition party. Our paper differs

because in our model agents do not learn the type of the policy, but the strength of the proposer

which endogenously determines the future outcome.

The existing literature on bargaining with incomplete information (Fudenberg et al., 1985;

Abreu and Gul, 2000; Deneckere and Liang, 2006; Lee and Liu, 2013) typically focuses on the

effect of private information of bargainer(s). In these models, a rejection by the informed bar-

gainer signals that the bargainer has a higher reservation value. In contrast, in our paper players

are symmetrically uninformed about the president’s ability and their conflicts over policy in-

duces social learning. Uncertainty about the bargaining strength of agents has been previously

proposed as a rationale for delay in bargaining. This has been explored in the seminal works of

Admati and Perry (1987), Cramton (1992) and more recently by Friedenberg (2019). We do not

seek to explain delay in this paper, but rather we seek to explain when we expect compromise

to arise, or when we expect a challenge to ensue. Our model features delay in the sense that
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conflict exogenously implies some delay relative to agreeing to a policy proposal immediately.

Theoretically our paper is also related to a rich literature in continuous time bargaining

models, including Ortner (2019); Perry and Reny (1993). Ortner (2019) is closely related as,

similar to us, the effect of evolving proposer power on bargaining outcomes is considered. Or-

tner (2019) considers a single issue, whereas we consider multiple. In addition, unlike Ortner

(2019), our model features endogenous evolution of proposal power as conflict is chosen. The

proposer and responder must therefore consider the trade-off between fighting for their pre-

ferred issue (which will imply learning about proposer strength) and settling for a less preferred

outcome. In earlier work, Powell (2004) also takes up the question of endogenous evolution of

proposer power, but in a discrete time setting with effectively a single issue being considered.

The remainder of the paper is organized as follows. In Section 2 we present the baseline

dynamic bargaining model. In Section 3 we provide a benchmark result in which we fully

characterize the unique equilibrium of the one-issue version of our model. In this model there

is no role for learning and compromise arises because conflict involves delay. In Section 4 we

characterize the equilibrium of the dynamic model with multiple issues and show that the set

of beliefs for which compromise is possible in equilibrium shrinks. In Section 5 we extend

the baseline model to include the possibility of more difficult issues and show that these can

introduce learning that forces players into permanent conflict or permanent compromise.

2 Model

We present a stylized model of two players, a proposer P (for example a President) and a

responder R (for example congress) who bargain over an infinite sequence of issues. We assume

that time is continuous t ∈ [0,∞) and new issues arise at random times. In particular, in any

interval of time [t, t+dt) a new issue arrives with probability 1−e−ξdt ≈ ξdt. At most one issue is

bargained over at any time, so the arrival of a new issue means the previous issue is abandoned

with no change in the status quo.

The game proceeds as follows. When a new issue arrives, the proposer can make a proposal

x ∈ X = {x0, xc, xP}. We denote x0 as the exogenous status quo position, xc as a compromise, and

xP represents the proposer’s preferred option. When a proposal is made, the responder chooses

to accept or reject the proposal. If the proposal is accepted, it is implemented immediately and

the proposer and responder receive payoffs. If the proposal is rejected, the proposer can choose

to force the issue and implement his ideal with some probability or allow the status quo to be

implemented immediately. We assume that the proposal, the decision to accept/reject and the

decision to force the issue do not introduce costly delay. In other words we assume that they
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happen instantaneously.

We model the proposer’s choice to force the issue or not as the choice of a two-armed

exponential bandit in the spirit of Keller et al. (2005). If the proposer chooses to force the issue

his success at implementing his ideal xP depends on his type θ ∈ {0, 1}. We say the proposer is

tough or θ = 1 if he is successful at forcing an issue with probability 1 − e−λdt ≈ λdt over time

interval [t, t + dt). If the proposer is soft then he is never successful at forcing an issue. The

common prior probability that the proposer is tough is p0. We say the proposer is weak if p is

low and strong when p is high. If the proposer chooses to force the issue, the issue is resolved

either when the proposer is successful and x is implemented, or if the proposer subsequently

makes an offer which is accepted.1

Players receive payoffs uP(x) and uR(x) when position x is implemented. We assume that

R strictly prefers x0 to xP, and, similarly, P strictly prefers xP to x0. We normalize the utility

of players such that uP(x0) = uR(xP) = 0. Also, let uP(xP) = ū, uP(xc) = uC, uR(x0) = v̄ and

uR(xc) = vC. We assume that 0 < uC < ū, and 0 < vC < v̄.2 Note that xc is considered a

compromise proposal because it is the second-ranked outcome for both players. Note also that

in this setting vC + uC > max{u, v} is sufficient for compromise to be efficient.3 Finally, utility is

discounted at a rate e−rdt with r > 0 and players maximize discounted sums of payoffs from all

issues bargained over.

Learning If the responder accepts the proposer’s offer, or the proposer decides not to force

the issue, then there is no learning about the proposer’s type and beliefs are unchanged. If

the responder rejects the offer and the proposer attempts to force the issue, the belief changes

depending on the outcome of the attempt. If the proposer succeeds in forcing the issue, then the

belief that the proposer is tough jumps to one and there is no learning thereafter. In other words,

“good” news is conclusive. As the proposer attempts to force the issue without success, then

players become more pessimistic about the proposer’s toughness. Formally, while the proposer

is forcing the issue, the belief that the proposer is tough changes on the time interval [t, t + dt)

1The way we model “forcing the issue” has parallels to Lee and Liu (2013). They also assume the proposer has
two types and a good proposer has higher probability of successfully extracting higher outside payment in the event
of no disagreement. Lee and Liu (2013) focus on one-sided learning, whereas we focus on two-sided learning in a
simpler setting.

2Note that commonly used utility functions satisfy these minimal assumptions. For example ui(x) = −(x − xi)2

with x ∈ R, x0 < xP, xR = x0, xC ∈ (x0, xP).
3The necessary and sufficient condition for compromise to be always efficient is uC + vC > max{(λu + ξv)/(r +

ξ + λ), ξv/(r + ξ)}. This is because of the loss due to delay when there is conflict.
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via Bayes’ rule according to

pt+dt =
pt(1 − λdt)

pt(1 − λdt) + (1 − pt)
. (1)

Markov Strategies We restrict attention to stationary Markov strategies where the state of the

game at period t is given by the belief pt about the probability that the proposer is tough. Denote

an offer strategy for the proposer as χ : [0, 1] → X which maps a belief pt into a proposal in

X. An acceptance strategy for the responder is a correspondence A : [0, 1] ⇒ X that gives the

set of proposals which the responder will accept given the state pt. Finally the strategy of the

proposer to force the issue or not is given by β : [0, 1] × X → {0, 1}, where 1 indicates that the

issue is forced.

To ensure that strategies are well-defined in this continuous time setting, we assume ad-

missability in the sense of Klein and Rady (2011).4 We further restrict attention to strategies

such that the responder accepts proposals when indifferent.5 This ensures that the equilibrium

of the continuous-time game is the limit of an equilibrium of a corresponding discrete-time

game. These restrictions together imply that equilibrium acceptance sets A(p) will be closed.

We consider Markov perfect equilibria which are subgame perfect equilibria in which players

use Markov strategies. We refer to a Markov perfect equilibrium with the above restrictions as

simply an equilibrium.

3 Single issue

To build intuition for the model and provide a benchmark where learning plays no role we first

describe the outcome of a game in which only one issue is bargained over. In this game, time

is continuous. At time t = 0 the proposer chooses a proposal x ∈ {x0, xc, xP}, the responder

then decides to accept or reject, and, finally, if rejected, the proposer decides whether or not

to force the issue. All these decisions happen instantaneously. If the proposer decides to force

the issue, either it is successful at rate λ, in which case the game ends with the proposer’s ideal

4Following Klein and Rady (2011) the strategy profile {χ, A, β} is admissable if there exists at least one well-
defined solution to the corresponding law of motion for posterior beliefs. This is the case if and only if for each
initial belief p0, there is a function t 7→ pt on [0,∞) that satisfies

pt =
p0e−λ

∫ t
0 Iχ(pτ )<A(pτ )Iβ(pτ,χ(pτ ))=1dτ

p0e−λ
∫ t

0 Iχ(pτ )<A(pτ )Iβ(pτ,χ(pτ ))=1dτ + 1 − p0

. (2)

5The is a common assumption in the dynamic bargaining literature, for example, Baron and Ferejohn (1989) or
Bowen et al. (2014).
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implemented, or the issue is abandoned at rate ξ after which the game ends and the status quo

is implemented. The decision to fore the issue is irreversible.6

We solve by backward induction beginning with the decision to force the issue. If a proposal

x has been rejected, then the responder decides to force the issue or allow the status quo x0 to be

implemented. Forcing the issue results in the proposer’s ideal xP being implemented with some

probability, hence it is always optimal to force the issue regardless of the state. Thus β(p) = 1

for all p.

Now consider the responder’s incentive to accept or reject the proposal. To do this we must

calculate the players’ dynamic payoffs under rejection given that rejection leads to the issue

being forced. While the issue is being forced, in the time interval [t, t + dt) the probability

that the proposer succeeds is given by 1 − e−pλdt ≈ pλdt. In this case, the game ends, and the

proposer and responder receive payoffs ū and 0 respectively. The probability that the issue is

abandoned in the interval [t, t + dt) is 1 − e−ξdt ≈ ξdt. This is independent of whether or not

the issue has been successfully forced. If the issue is abandoned, then the proposer has lost his

opportunity to successfully force the issue and the game ends with the status quo implemented.

The payoffs to the proposer and responder are thus 0 and v̄ respectively. With the remaining

probability 1 − pλdt − ξdt nothing happens in that time interval and players continue to wait

either for the issue to be successfully forced or for the issue to be abandoned.

Denote the dynamic payoff for player i when the proposal is rejected as Vi,re ject. This is

determined recursively by the equation

Vi,re ject = pλdtui(xp) + ξdtui(x0) + (1 − pλdt − ξdt)e−rdtVi,re ject.

Substituting 1 − rdt for e−rdt, dropping higher order terms and simplifying yields

Vi,re ject =
pλui(xp) + ξui(x0)

pλ + ξ + r
.

The responder thus accepts the proposal if uR(x) ≥ ξv/(pλ + ξ + r). The responder’s payoff to

the proposer’s ideal is normalized to 0 so this is always rejected. The responder’s payoff to the

status quo is v so this is always accepted. The responder accepts the compromise if and only if

vC/v ≥ ξ/(pλ + ξ + r) or if

p ≥
ξ(v̄ − vC) − rvC

λvC
≡ p

1
.

Consider the proposer’s choice of proposal x ∈ {x0, xc, xp}. The proposer’s ideal xp is always

rejected, and the status quo x0 is always accepted. Given that the proposer prefers some chance
6See the discussion at the end of this section considering if this is relaxed and compromise can be selected after

the proposer chooses to force the issue. The results in this case are unchanged.
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of achieving his ideal payoff, proposing his ideal always dominates proposing the status quo.

We now compare the proposer’s incentive to propose the compromise versus his ideal. First

consider that vC/v < ξ/(pλ+ξ+r). Then the responder rejects the compromise and the proposer

is better of proposing his ideal with some probability of implementation. Next suppose vC/v ≥

ξ/(pλ + ξ + r), then if the proposer proposes the compromise it is accepted right away, but his

ideal is implemented with some probability and with some delay. The proposer will propose

the compromise if and only if uC/ū ≥
pλ

pλ+ξ+r , or if and only if

p ≤
uC(r + ξ)
λ(u − uC)

≡ p1. (3)

We require p
1
< p1 for compromise to occur which implies vC/v > [ξ/(r + ξ)][1 − uC/ū]. We

therefore have the following result in the case of one issue.

Proposition 1 In the one-issue model, the proposer always forces the issue after a rejection.

i.e. β(p, x) = 1 for all p and all x. In addition:

1. Suppose vC/v ≤ [ξ/(r + ξ)][1 − uC/ū], then there is always conflict in the one issue case.

Specifically,

χ(p) = xp,

A(p) = {x0}.

2. Suppose vC/v > [ξ/(r+ξ)][1−uC/ū], then there is compromise if the proposer is uncertain

about his strength. Specifically,

χ(p) =

xc if p ∈ [p
1
, p1]

xp otherwise.

A(p) =

{x0, xc} if p ∈ [p
1
, 1]

{x0} otherwise.

Note from equation (3) that p1 > 0 for all parameter values. Corollary 1 summarizes the

parameters such that compromise is possible.

Corollary 1 In the one-issue model compromise can occur in equilibrium if and only if one of

the following parameter restrictions hold:

1. p
1
< 0 < 1 < p1, in which case uC/u > λ/(λ + ξ + r), vC/v̄ > ξ/(r + ξ);
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2. p
1
< 0 < p1 ≤ 1, in which case uC/u ≤ λ/(λ + ξ + r), vC/v̄ > ξ/(r + ξ).

3. 0 ≤ p
1
< 1 < p1, in which case uC/u > λ/(λ + ξ + r), ξ/(λ + r + ξ) < vC/v̄ ≤ ξ/(r + ξ);

4. 0 ≤ p
1
< p1 ≤ 1, in which case uC/u ≤ λ/(λ+ξ+r), [ξ/(r+ξ)][1−uC/ū] < vC/v̄ ≤ ξ/(r+ξ);

We illustrate the parameters such that compromise can occur in Figure 1. Note that compromise

occurs in the one issue model because of the cost of delay induced by conflict and because the

proposer prefers compromise to the probability of a worse outcome. This happens only when

the responder’s payoff to compromise is sufficiently high.7 In the next section we explore the

role of learning in the fully dynamic model with multiple issues.

1

0 1

Proposer: uC/ū

Responder: vC/v̄

ξ

r+ξ

ξ

r+λ+ξ

λ
r+λ+ξ

all plow p

high p

conflictconflict

intermediate p

Figure 1: One issue range of parameter values such that compromise occurs in equilibrium.

Blue region is for always compromise p
1
< 0 < 1 < p1, red is for compromise when p is

sufficiently low p
1
< 0 < p1 ≤ 1, orange is for p sufficiently high 0 ≤ p

1
< 1 < p1, and green is

for p in an intermediate range 0 ≤ p
1
< p1 ≤ 1.

Note that the case considered in this section involved no learning, but is equivalent to the

following single-issue case with learning. Consider a single-issue case, but assume that there is

learning and the proposer is able to switch to compromise at any time after he has decided to

force the issue. The bounds on the interval of beliefs such that compromise occurs is identical
7In the Appendix Section 7.4 we present a version of the model in which there is no benefit to delay from the

compromise, and we attain qualitatively similar results for the case of learning.
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to those derived in this section. To see this, note that for the proposer to propose the compro-

mise, he must be indifferent between continuing to force the issue, and immediate compromise.

Similarly, the responder must be indifferent between immediate compromise and the contin-

ued possibility of the proposer’s ideal. Thus the threshold beliefs satisfy the same indifference

conditions as before. One way to interpret this is that learning has no value when there are no

further issues with which to make use of the knowledge.

4 Learning over multiple issues

We study Markov perfect equilibria of the game with learning about the proposer’s type over

an infinite sequence of issues. The payoff relevant state variable of the game is the belief that

the proposer is tough p. The main insight is that learning reduces opportunities to compromise.

We first characterize the Markov perfect equilibrium of the game with compromise. Note that

we do not present the proposer’s strategy to force the issue or not as forcing the issue occurs

trivially in every equilibrium as the intuition in the one-issue case of Section 3 points to.

Proposition 2 There exists an equilibrium when there are multiple issues as follows.

χ(p) =

xc if p ∈ [p, p]

xP otherwise,
A(p) =

{x0, xc} if p ≥ p

{x0} if p < p,

where

p =
uCr(λ + r + ξ)

[(ū − uC)(r + λ) − ξuC]λ

p =
[ξ(v̄ − vC) − rvC](r + λ + ξ)

ξv̄λ
.

We provide the complete proof in Appendix Section 7.1, and henceforth all proofs are in-

cluded in the Appendix unless otherwise stated. We summarize the key incentive constraints to

provide intuition for the result.

Permanent Conflict We first derive the value function that would arise if there is permanent

conflict, i.e., the proposer offers xP in every period, which the responder always rejects. This

occurs for beliefs p < p. If the proposer does not successfully force the issue, the belief p

gradually decreases, and thus stays in the conflict region. If the issue is successfully forced,

then the belief jumps up to one, and thus conflict continues.

In the dynamic model an issue is resolved if either a proposal is accepted, or the issue was

successfully forced. In either case, players are simply waiting for a new issue to arrive and there
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is no learning. Define V̂i,c to be the player i’s value function if the issue has been resolved. In

the following we consider an infinitesimally small time interval [t, t + dt). First, note that if the

current issue has been resolved, then the players do not take any action and wait for the next

issue to come up, which occurs with probability ξdt. Then for i = P,R and p ∈ [0, 1],

V̂i,c(p) = e−rdt(ξdtVi,c(p) + (1 − ξdt)V̂i,c(p)).

Rearranging terms, noting that e−rdt ≈ 1 − rdt, dropping higher order terms and simplifying

yields

V̂i,c(p) =
ξ

r + ξ
Vi,c(p). (4)

Now consider that the proposer has decided to force the issue and is waiting for a success or

for a new issue to arrive. We denote these value functions by VP,c(p) and VR,c(p), respectively.

Using V̂i,c(p) we derive Vi,c(p) for the two extreme values of p. Suppose first that the proposer

is known to be tough, i.e., p = 1. There is a conflict at every instant, and the proposer succeeds

in forcing the issue at a rate of λ, in which case the proposer and the responder obtain payoffs ū

and 0, respectively, and the players wait for the next issue to come up. If the issue has not been

resolved, then with probability ξdt the issue is replaced with the new one, in which case P and

R obtain payoffs of 0 and v̄, respectively. Therefore,

VP,c(1) = λdt[ū + V̂P,c(1)] + (1 − λdt)e−rdtVP,c(1),

VR,c(1) = λdtV̂R,c(1) + (1 − λdt)(ξdtv̄ + e−rdtVR,c(1)).

Simplifying, we have

VP,c(1) =
λ(r + ξ)

r(r + λ + ξ)
ū,

VR,c(1) =
ξ(r + ξ)

r(r + λ + ξ)
v̄.

When p = 0, the proposer never succeeds in forcing the issue (that is, λ = 0 in the above

equations), and thus the value functions are

VP,c(0) = 0,

VR,c(0) =
ξ

r
v̄.

Player i’s value function Vi,c(p) is the convex combination of Vi,c(1) and Vi,c(0). To understand

this, note that the players’ never change their actions in the future: Regardless of the outcome,

12



P always proposes xP which R rejects. Therefore,

VP,c(p) = pVP,c(1) + (1 − p)VP,c(0) = pū
λ(r + ξ)

r(r + λ + ξ)
, (5)

VR,c(p) = pVR,c(1) + (1 − p)VR,c(0) =
ξv̄

r

(
1 −

pλ
r + λ + ξ

)
. (6)

Note that both value functions are affine linear. The proposer’s function is increasing in p, while

the responder’s is decreasing in p.

No Conflict The second important benchmark is where no conflict occurs or when p ≤ p ≤ p.

In this case, the proposer offers the compromise xc, and the responder accepts. No learning

occurs, and hence the payoffs do not depend on the belief p. Let Vi,n be player i’s continuation

utility. We can again define V̂i,n as the continuation utility after the issue has been resolved. The

same argument used to derive (4) can be used to show that

V̂i,n =
ξ

r + ξ
Vi,n.

Then

VP,n = uC + e−rdt(ξdtVP,n + (1 − ξdt)V̂P,n),

VR,n = vC + e−rdt(ξdtVR,n + (1 − ξdt)V̂R,n).

Simplifying yields

VP,n =
r + ξ

r
uC, (7)

VR,n =
r + ξ

r
vC. (8)

Upper bound on p We can find p̄ as it is the p such that the proposer is just indifferent

between conflict and compromise. The value matching condition (Dixit (2002)) gives

r + ξ

r
uC = λpdt[ū + V̂P,c(1)] + (1 − λpdt)e−rdt r + ξ

r
uC.

Simplifying yields

p̄ =
uCr(λ + r + ξ)

[(ū − uC)(r + λ) − ξuC]λ
.
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Lower bound on p The lower bound on p is such that the responder is just indifferent between

compromise and permanent conflict and this gives

r + ξ

r
vC =

ξv̄

r

(
1 −

pλ
r + λ + ξ

)
.

This implies

p =
[ξv̄ − (ξ + r)vC](r + λ + ξ)

ξv̄λ
.

We can compare the bounds on p such that compromise is achieved in the case of multiple

issues to those derived in the single-issue case with no learning, and show that learning with

multiple issues reduces the values of p such that compromise is attained.

Proposition 3 When compromise is attained for an intermediate set of beliefs (i.e. 0 < p < p <

1), the set of beliefs such that compromise is the outcome in the multi-issue case is smaller than

the set of beliefs in the single-issue case. i.e. [p, p] ⊂ [p
1
, p1].

Note that the key difference is learning combined with multiple issues. Consider an alternate

multi-issue model with no learning. That is, the probability of the proposer successfully forcing

the issue is fixed at pλ, and thus the proposer decides at the beginning of the game whether to

pursue permanent conflict or compromise. Multiple issues may arise, but these will not change

the proposer’s or responder’s decisions. This therefore results in a scaling up of the payoffs both

to conflict and compromise, relative to the single-issue case, and the bounds are thus unchanged.

This highlights that the key driver of the reduction of the belief interval going from single-issue

to multiple issues is learning combined with the future issues.

Thus learning with multiple issues reduces the opportunity to compromise. The intuition for

the upper bound is a straightforward application of the standard dynamic experimentation versus

exploitation trade-off in the bandit literature. From the perspective of the proposer, forcing the

issue is risky, but the incentive to learn and benefit from that learning increases the incentive to

take the risk. The proposer thus “experiments” with forcing the issue for lower values of the

belief than if there was no learning possible.

The intuition for the lower bound is more subtle as it increases going from the case of no

learning to learning and is driven by the responder’s constraint. Like the proposer, the responder

has a stronger incentive to experiment when learning is present and there are multiple-issues,

however the responder hopes to learn that the proposer is weak. Since the responder prefers to

experiment for low values of p (as opposed to high-values for the responder) an increase in the

incentive to experiment raises the lower bound on the compromise interval.
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In summary, learning reduces the set of beliefs for which compromise occurs. However,

this does not imply that compromise is achieved less frequently under learning. In particular,

suppose we start at a belief p > p1. Without learning we have permanent conflict. With

learning, the beliefs move into the compromise region with a probability of at least 1 − p, and

hence eventual compromise is possible.

Value of information To provide further intuition for the result, we use the value functions

to determine the value of information. The value of information is simply the expected infor-

mational benefit from conflict.8 For the proposer, the benefit is in learning that he is tough, and

for the responder, the benefit is learning that the proposer is soft. The value of information for

player i = P,R in the interval [t, t + dt) is given by

VIi(p) = λp(Vi(1) − Vi(p)) − V ′i (p)λp(1 − p). (9)

The first term in the expression is the expected benefit from learning that the proposer is

tough for certain. The second term is the loss to the proposer if no success occurs, or the benefit

to the responder if no success occurs. Figure 2 graphs the value of information and the value

functions for a parametric example.
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Figure 2: Utility and the value of information for the responder (red) and the proposer (blue):

ξ = 0.2, r = 0.1, λ = 0.7, vC = 0.55, uC = 0.6, v̄ = ū = 1.

For p < p we have Vi(p) = Vi,c(p) from equations (5) and (6). Simplifying (9) shows that

the value of information is zero as illustrated in Figure 2. The reason is that information will

not change players’ strategies, as conflict will ensue even if there is new information.

8This is similar to the value of playing the risky alternative in Keller et al. (2005).
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If p ∈ [p, p] then Vi(p) = Vi,n from equations (7) and (8), which is constant and hence

V ′i (p) = 0. For the responder VR(1) < VR(p) if and only if vC/v̄ > ξ/(r + λ + ξ). For the

proposer, VP(1) > VP(p) if and only if uC/ū < λ/(r + λ + ξ), which is the condition under

which p < 1. In this case the value of information is strictly positive and strictly increasing for

the proposer, and strictly negative and strictly decreasing for the responder in the compromise

region. This reflects the fact that as p gets smaller, the proposer’s value of experimenting is

decreasing, as there is less the proposer is able to do. From the responder’s perspective, his

benefit from information is increasing as beliefs drift down, because he approaches the region

of beliefs such that he rejects the compromise.

In the Appendix, Section 7.1 we show that if p > p then the proposer’s and responder’s

value functions are convex. If we start with some belief p > p at time t and learning occurs,

then the belief at t + dt remains above p. By (9), the strict convexity of Vi(p) implies that the

value of information is strictly positive for both players. That is, both players have the ability

to modify actions based on information arrival. Note that the proposer’s value of information

is continuous at p, but the responder’s is discontinuous at that point. The reason is that it is the

proposer who chooses to switch from proposing conflict, to compromise. When the proposer

does this the responder’s value of information becomes negative—information can only hurt the

responder by causing the proposer to revert to conflict.

We next examine parameter values that admit compromise in the multi-issue case and also

show that this set is smaller than in the case of a single-issue, consistent with compromise being

possible in fewer environments when there is multi-issue bargaining.

Regions of compromise The following corollary provides conditions under which there exists

an equilibrium with a non-empty compromise interval.

Corollary 2 In the multi-issue model compromise occurs if and only if one of the following

parameter restrictions hold:

1. p < 0 < 1 < p, in which case vC/v̄ > ξ/(r + ξ), and uC/ū > λ/(r + λ + ξ).

2. p < 0 < p ≤ 1, in which case vC/v̄ ≥ ξ/(r + ξ), and uC/ū ≤ λ/(r + λ + ξ).

3. 0 ≤ p < 1 < p, in which case uC/ū > λ/(r + λ + ξ), ξ/(r + λ + ξ) < vC/v̄ ≤ ξ/(r + ξ).

4. 0 ≤ p < p ≤ 1, in which case uC/ū ≤ λ/(r + λ + ξ) and ξ/(r + ξ)
[
1 − ruC

(r+λ)ū−(r+λ+ξ)uC

]
<

vC/v̄ ≤ ξ/(r + ξ).
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Figure 3: Multi-issue range of parameter values such that compromise occurs in equilibrium.

Blue region is for always compromise p
1
< 0 < 1 < p1, red is for compromise when p is

sufficiently low p
1
< 0 < p1 ≤ 1, orange is for p sufficiently high 0 ≤ p

1
< 1 < p1, and green is

for p in an intermediate range 0 ≤ p
1
< p1 ≤ 1.

Finally, in all remaining cases there is always conflict. Figure 3 indicates the values of vC/v̄

and uC/ū such that these cases occur.

Note that the curved line is the lower bound of the region for which compromise occurs

in a middle interval. Comparing Figures 1 and 3 it is clear that learning reduces the set of

parameters that admit an equilibrium that will feature compromise. This can be seen by com-

paring condition 4 in Corollaries 1 and 2. In the single issue case the restriction on the re-

sponder’s payoff is [ξ/(r + ξ)][1 − uC/ū] < vC/v̄ < ξ/(r + ξ) and in the multi-issue case it is

[ξ/(r + ξ)][1 − ruC
(r+λ)ū−(r+λ+ξ)uC

] < vC/v̄ < ξ/(r + ξ). We can show that the lower bound in the

multi-issue case is strictly above the upper bound in the single-issue case if uC/ū < λ/(r +λ+ ξ)

which is always the case in the green region.

Comparative Statics Given the simple expressions for the bounds on beliefs for compromise

to occur, we can do straightforward comparative statics.

Proposition 4 Suppose that 0 < p < p < 1.
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1. The set of beliefs such that compromise occurs is strictly increasing in r. i.e.

∂p/∂r < 0 and ∂p/∂r > 0

.

2. The set of beliefs such that compromise occurs is strictly decreasing in λ. i.e.

∂p/∂λ > 0 and ∂p/∂λ < 0.

The first part of Proposition 4 is straightforward and says that compromise will occur in

more environments when players are less patient. This is driven by the fact that a compromise

is resolved quickly, but delay is introduced with conflict. The second part of Proposition 4

relates to the speed of learning. As the speed of learning increases (an increase in λ) players’

willingness to compromise decreases. From (9) observe that the value of information increases

with the speed of learning λ. As the value of information increases, the incentive to experiment

increases, and thus the incentive to compromise decreases.

The results of this section suggest that there may be a benefit to turnover in proposers. If

bargaining is with a new proposer each time, so learning has no value, then conflict is likely to

be reduced. We next explore another possibility, that there are more types of issues possible.

5 Difficult issues

In this section, we assume that a “difficult” policy issue may arise. Formally, with probability

α > 0, a policy issue with no compromise proposal arises, and the proposer can only propose

either xP or x0. With the complementary probability, the standard policy issue (with three

possible outcomes) arises. We refer to the standard policy issue as an “easy” issue.

We focus on the parameter range such that compromise occurs in the intermediate range of

beliefs. We assume that α is small, and thus the equilibrium behavior under the standard policy

issue remains qualitatively the same. The compromise region is a closed interval [p
α
, pα].

We construct two types of equilibria whose behavior differ qualitatively under difficult pol-

icy issues. First, there exists an equilibrium in which the proposer offers xP for any p ∈ (0, 1).

We call this the conflict equilibrium. Second, there exists an equilibrium in which the proposer

offers x0 at p = p
α
, and offers xP otherwise. We call this the avoiding the issue equilibrium. We

find the parametric conditions for each equilibrium to exist.
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Proposition 5 (conflict equilibrium) Let p be as defined in (3). Suppose that α is sufficiently

small. Also, suppose that
ξ(1 − α)

r + ξ

uC

ū
+

r + ξ

ξ

vC

v̄
≤ 1. (10)

Then there exists an equilibrium with the following behavior:

• Under the standard policy issues, the players compromise at xc if and only if p ∈ [p, pα]

for some pα ∈ (p, 1).

• Under the difficult policy issues, for any p ∈ (0, 1) the proposer offers xP and the respon-

der rejects the proposer’s offer.

In the conflict equilibrium, even if compromise can be maintained on easy issues, difficult

issues arise. Conflict over difficult issues leads to learning. If the belief jumps to one, or if

the belief drifts sufficiently low then it enters the conflict region even for easy issues. There

is permanent conflict thereafter in equilibrium. This helps to explain why conflict can arise on

seemingly easy, non-contentious issues, where there was no conflict before. The reason is that

learning about proposer power generates bargaining dynamics that give either the proposer or

the responder greater incentive to reject compromise proposals.

Proposition 6 (avoiding the issue) Define p
0

and p̃ as

p
0

=
(r + λ + ξ)(ξ(1 − α)v̄ − (r + ξ(1 − α))vC)

λξv̄

p̃ =
uC

ū
ξ(1 − α)(r + λ + ξ)

λ(r + ξ)
.

Suppose that α is sufficiently small and

(1 − α)(ū(r + ξ) − ξuC)ξ
ū(r + ξ)(r + ξ(1 − α))

≤
vC

v̄
, (11)

then there exists a p̂ ∈ [p
0
, p̃], such that for any p

α
∈ [p

0
, p̂], there is an equilibrium with the

following behavior:

• Under the standard policy issues, the players compromise at xc if and only if p ∈ [p
α
, pα]

for some pα ∈ (p
α
, 1).

• Under difficult policy issues, at p = p
α

the proposer offers x0 and the responder accepts

the proposer’s offer. Otherwise, the proposer offers xP and the responder rejects the offer.
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Moreover if

ξ(1 − α)
r + ξ

uC

ū
+

r + ξ

ξ

vC

v̄
≤ 1, (12)

then p̃ ≤ p.

In the avoiding the issue equilibrium, conflict ensues on difficult issues until the belief equals

the lower bound of the compromise interval. At the lower bound the proposer accommodates

on difficult issues by proposing the status quo. This avoids learning. There is compromise

thereafter, even on difficult issues. Note that the lower bound on beliefs such that compromise

will arise p
0

is lower than the lower bound for the conflict equilibrium, but the upperbound is

the same pα. Thus the avoiding the issue equilibrium admits compromise on easy issues for a

larger set of parameters than the conflict equilibrium.

Note that there is a set of parameters such that both equilibria exist. Specifically, conditions

(10) and (11) together imply

(1 − α)(ū(r + ξ) − ξuC)ξ
ū(r + ξ)(r + ξ(1 − α))

≤
vC

v̄
≤

ξ

r + ξ
−
ξ2(1 − α)
(r + ξ)2

uC

ū
.

This reinforces that conflict may not be deterministic. Conditions that admit permanent conflict

may also admit conceding on even difficult issues.

6 Discussion

In this paper we provide a model that predicts the dynamics of bargaining when proposal power

evolves endogenously. We show that agents will compromise when the proposer is neither

too strong nor too weak. A strong proposer is never willing to offer a compromise, while

the responder is never willing to compromise when the proposer is too weak. The incentive

constraints of both the proposer and responder determine an intermediate range of beliefs such

that compromise occurs. In this interval, the proposer believes he is too weak to force an issue

successfully, and the responder prefers to compromise rather than learn about the proposer’s

type.

We seek to understand how the evolution of power may explain puzzling bargaining out-

comes. That is, observing conflict on issues that may have previously been a relatively easy

issue to settle. We show that when difficult issues arise that force the agents into conflict, it also

forces learning about the proposer’s strength. If the proposer learns either that he is tough with

certainty, and becomes too weak, then conflict ensues on every issue. But we also show the

existence of an equilibrium where the proposer accommodates the responder on difficult issues
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when the belief about his type is too low. This avoids learning, and allows the compromise to

be sustained for easy issues. We think this helps explain instances where proposers “avoid the

issue”.

We considered the possibility of easy and difficult issues arising exogenously. In future

work we will consider endogenous sequencing of issues according to their level of “difficulty”.

Considering that learning takes place it will be useful to understand the order in which we expect

to see proposals. This will likely require a model with a continuous set of possible issues. We

also consider that all easy issues have the same payoff structure. It is possibile that the difficulty

of the issue is related to differences in payoffs. It would also be fruitful to analyze the case of

issues with heterogenous payoffs.
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7 Appendix

7.1 Proof of Proposition 2

The proof is conducted as follows. First, we derive the value function of each player under the
conjectured strategy profile. Then we verify each player’s incentive conditions and derive the
values of p and p.

Value Functions Observe that Vi(p) = Vi,c(p) for any p < p, since the belief dynamics imply
that if pt′ p for some t′ > 0, the players will always create conflict for any t > t′. Similarly,
Vi(p) = Vi,n(p) for any p ∈ [p, p]. Therefore, it remains to derive the value functions for p > p.

First, consider the proposer’s value function VP(p) for p > p. In the interval [t, t + dt),
the probability that the proposer overturns a rejection is given by 1 − e−λdt = λdt. In this
case, the issue is resolved, and the proposer receives utility ū. In addition, the proposer’s type
is now known to be high, i.e., p = 1. A new issues arrives in the interval [t, t + dt) with
probability 1 − e−ξdt = ξdt. In this case, we switch to the value function VP(1). With the
remaining probability, 1 − ξdt, the players wait for a new issue to arrive, and hence the value
function becomes V̂P(1). With probability 1 − pλdt the issue is not resolved in [t, t + dt). As a
consequence, the belief decreases to p + dp, where dp will be computed below (and of course
dp < 0). The continuation utility in this case is VP(p + dp).

Therefore, VP(p) is determined recursively by the equation

VP(p) = pλdt
(
ū + e−rdt(ξdtVP(1) + (1 − ξdt)V̂P(1))

)
+ (1 − pλdt)e−rdtVP(p + dp),

where
V̂i(p) =

ξ

r + ξ
Vi(p).

Substituting 1 − rdt for e−rdt yields

VP(p) = pλdt
(
ū + (1 − rdt)(ξdtVP(1) + (1 − ξdt)V̂P(1))

)
+ (1 − pλdt)(1 − rdt)VP(p + dp).

Note that VP(p + dp) = VP(p) + V ′P(p)dp, and the belief dynamics are given by dp/dt =

−λp(1 − p). Therefore,

(1 − (1 − pλdt)(1 − rdt))VP(p) = pλdt
(
ū + (1 − rdt)(ξdtVP(1) + (1 − ξdt)V̂P(1))

)
− (1 − pλdt)(1 − rdt)V ′P(p)λp(1 − p)dt.

Dropping higher order terms, i.e., dt2 and dt3 we get

(r + pλ)VP(p)dt = pλ
(
ū + V̂P(1)

)
dt − V ′P(p)λp(1 − p)dt.

Substituting the value of V̂P(1) yields the differential equation

(r + pλ)VP(p) = pλū
(
1 +

ξλ

r(r + λ + ξ)

)
− V ′P(p)λp(1 − p).
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Solving the differential equation we get

VP(p) =
(1 − p)1+ r

λ

p
r
λ

KP + VP,c(p), (13)

where KP is the integration constant, and VP,c(p) is the permanent-conflict value function derived
in Section 4. We can see that VP(p) is striclty convex. In particular, VP,c(p) is affine linear,
KP > 0 and the first summand in (13) is therefore strictly convex.

The boundary condition is VP(p) = VP,n, where Vp,n is the continuation value if there is no
conflict, derived in section 7.4. It is easy of verify that VP,n > VP,c(p) if and only if uC/ū < λ

r+λ+ξ
.

Hence K > 0.
We now determine the responder’s value function VR(p) for p > p. Using a similar argument

as for the proposer, the responder’s value function is defined recursively as follows:

VR(p) = pλdte−rdt(ξdtVR(1) + (1 − ξdt)V̂R(1)) + (1 − pλdt)
(
ξdtv̄ + e−rdtVR(p + dp)

)
.

Applying 1 − rdt = e−rdt and VR(p + dp) = VR(p) + V ′R(p)dp yield

(1 − (1 − pλdt)(1 − rdt)) VR(p) =pλdt(1 − rdt)(ξdtVR(1) + (1 − ξdt)V̂R(1))

+ (1 − pλdt)
(
ξdtv̄ − (1 − rdt)V ′R(p)λp(1 − p)dt

)
.

Dropping higher order terms, we have

(r + pλ)VR(p)dt = pλV̂R(1)dt + ξv̄dt − V ′R(p)λp(1 − p)dt.

Thus, VR satisfies the following differential equation

(r + pλ)VR(p) =
pλξ2v̄

r(r + λ + ξ)
+ ξv̄ − V ′R(p)λp(1 − p).

Solving the differential equation yields

VR(p) =
(1 − p)1+ r

λ

p
r
λ

KR + VR,c(p), (14)

where KR is the integration constant. The boundary condition that determines KR is given by
VR(p) = VR,n. Below, we show that KR is positive.

Equilibrium verification Given the above value functions, we verify that the equilibrium
profile is indeed optimal for each player.

For p < p, the responder rejects any offer from the proposer, and the proposer offers xP.
Given the responder’s behavior, the proposer’s incentive condition is trivial. Therefore, it suf-
fices to check if the responder rejects a compromise offer xc if the proposer deviates and makes
such proposal. This requires that

VR,c(p) ≥ vC + V̂R,c(p)
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Note that this inequality simplifies to VR,c(p) ≥ VR,n. Since VR,c(p) is decreasing in p, the above
inequality satisfies if and only if

VR,c(p) ≥ VR,n. (15)

Next, we check each player’s incentive for p ∈ C̄. First consider the responder’s incentives:
We need to check two incentive conditions: (a) responder’s incentive to accept xc; and (b) his
incentive to reject xP.

If the responder accepts the the proposer’s offer xc, then the belief stays the same and there
will be an agreement at xc for all future periods. If the responder rejects the offer, then learning
occurs. With probability pλdt the proposer overturns the rejection and the issue is resolved
with position xP. With the complementary probability, however, the proposer fails to overturn,
in which case the current is continues and the belief gradually declines. Therefore, the responder
is better off accepting the offer xc if

VR(p) ≥ pλdte−rdt(ξdtVR(1) + (1 − ξdt)V̂R(1)) + (1 − pλdt)
(
ξdtv̄ + e−rdtVR(p + dp)

)
. (16)

There are two cases to consider:
Case 1: The belief after the proposer’s failure moves outside the compromise region, i.e.,
p + dp < p. In this case, the incentive condition (16) becomes

VR,n ≥ pλdte−rdt(ξdtVR(1) + (1 − ξdt)V̂R(1)) + (1 − pλdt)
(
ξdtv̄ + e−rdtVR,c(p)

)
.

Note the last term: If the responder rejects xP and the proposer fails to overturn, then the belief
goes out of the compromise region. Dropping the terms with orders of dt and higher, we have

VR,n ≥ VR,c(p). (17)

Combining with (15), we have VR,n = VR,c(p), which gives the formula for the lower bound:

p =
(ξv̄ − (ξ + r)vC)(r + λ + ξ)

ξv̄λ
. (18)

Case 2: The belief after the proposer’s failure is still in the compromise region, i.e., p+dp ≥ p.
In this case, (16) becomes

VR,n ≥ pλdte−rdt(ξdtVR(1) + (1 − ξdt)V̂R(1)) + (1 − pλdt)
(
ξdtv̄ + e−rdtVR,n

)
. (19)

Dropping terms with orders of dt2 and higher, we get

pλ
(
VR,n − V̂R(1)

)
+ rVR,n ≥ ξv̄ (20)

Note that the left-hand side (the right-hand side) of the above inequality captures the cost (bene-
fit) of rejecting xc. First, the cost: when the proposer succeeds in overturning the rejection, then
the future value function drops to V̂R(1). Further, in case of failure, the agreement is delayed:
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this is captured with the term rVR,n. The benefit comes from the case in which the Proposer fails
to overturn the rejection and the current is replaced with the new one.

It remains to show that (20) holds for all p ∈ [p, p]. Given that the right-hand side of (20)
is decreasing in p, it is sufficient to show that the inequality holds at p = p. Plugging in (18), it
can be shown that (20) holds at p = p if and only if

vC

v̄
>

ξ

r + λ + ξ
.

Since p < 1 if and only if vC
v̄
> ξ

r+λ+ξ
, it must be that (20) holds for all p ∈ [p, p] as long as

p < 1.
Next, the responder must reject xP when it is offered by the proposer. Again, we have the

following two cases:
Case 1: The belief after the proposer’s failure moves outside the compromise region. In
this case, the responder’s incentive condition holds if VR,c(p) ≥ V̂R,n. The continuation payoff

from rejecting the offer is VR,c(p) because the belief moves outside the compromise set. If,
instead, the responder accepts the offer, then the belief remains in the compromise set and the
continuation payoff is V̂R,n. This inequality trivially holds, because VR,c(p) = VR,n ≥ V̂R,n.
Case 2: The belief after the proposer’s failure is still in the compromise region. In this case,
the responder’s incentive constraint holds if VR,n ≥ V̂R,n, which is always satisfied.

Next, consider the proposer’s incentive constraints for p ∈ C. In region C the proposer
should prefer offering xc (which is immediately accepted) to offering xP (which is rejected). If
the belief after a proposer’s failure remains in the compromise set, then

VP,n ≥ pλdt
(
ū + e−rdt(ξdtVP(1) + (1 − ξdt)V̂P(1)

)
+ (1 − pλdt)e−rdtVP,n. (21)

Solving (21) yields
pλ

(
ū + (V̂P(1) − VP,n)

)
≤ rVP,n. (22)

Similar to the responder’s incentive constraint, both terms in the inequality capture the pro-
poser’s benefit and cost of creating conflict (by offering xc). The benefit comes from overturn-
ing the rejection, in which case the proposer enjoys not only the lump-sum payoff of ū but also
an increase in the value function. However, the cost comes in the case of failure, because the
agreement is delayed.

(22) determines the upper bound, p, of the compromise set. In order for p < 1, the inequality
must be violated for p = 1 and hold for smaller p. In order for (22) to be violated at p = 1 we
must have ū + V̂P(1) > r+λ

λ
VP,n, which simplifies to

uC

ū
<

λ

r + λ + ξ
. (23)

For p = 0 the equation always holds. Therefore, given that (23) holds, (22) implies that the
upper bound of the compromise set is

p =
rVP,n

λ
(
ū + V̂P(1) − VP,n

) , (24)
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which is equivalent to

p =
r(r + λ + ξ)uC

λ((r + λ)ū − (r + λ + ξ)uC)
. (25)

In order for the compromise set to be non-empty it must be the case that p < p.
Finally, suppose by way of contradiction that it is optimal for the proposer to deviate and

offer xc when p > p. This deviation is only optimal if the responder would accept xc. However,
then it should be optimal to for the proposer to offer xc in every period, which is not the case
when p > p, a contradiction.

7.2 Proof of Proposition 3

A simple calculation yields

p − p
1

=
[vξ − vC(r + ξ)][vC(r + λ + ξ) − vξ]

ξλvvC
,

which is strictly positive if

ξ

r + λ + ξ
<
vC

v
<

ξ

r + ξ
. (26)

Also,

p1 − p =
uCξ[uλ − uC(λ + r + ξ)]

λ(u − u)[u(λ + r) − uC(λ + r + ξ)]
,

which is strictly positive if

uC

u
<

λ

λ + r + ξ
. (27)

Conditions (26) and (27) are implied by the conditions in Corollary 2.4. This proves the result.

7.3 Proof of Propositions 5 and 6

We first derive the players’ value functions in each type of equilibrium. Observe that the two
types of equilibrium differs only in the behavior at p = p

α
. Therefore, the differential equations

underlying both value functions are identical, and they differ only in the boundary conditions at
p = p

α
. After obtaining the value functions, we verify each type of equilibrium by investigating

the players’ incentive conditions.

Value function Let Vi(p), i = P,C be the value function under the easy issues, and let Wi(p)
be the value function under the difficult issues. Also, for notational simplicity, define Zi(p) to
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be the value function when the new issue arises, and define Ẑi(p) as the value function when the
current issue is resolved (but the new issue has not yet appeared). Then it is straightforward that

Zi(p) = (1 − α)Vi(p) + αWi(p), (28)

Ẑi(p) =
ξ

r + ξ

(
(1 − α)Vi(p) + αWi(p)

)
. (29)

Observe that for p < p
α
, regardless of the policy issue type, a permanent conflict occurs in

equilibrium. Therefore, Vi(p) = Wi(p) = Vi,c(p).
Next, we derive the value functions for p ∈ (p

α
, pα]. Consider first the proposer’s value

function. Under the easy issue, the proposer offers xc and the responder accepts the offer.
Therefore, VP(p) satisfies

VP(p) = uC + e−rdt
(
ξdtZP(p) + (1 − ξdt)ẐP(p)

)
.

Cancelling the terms with order dt or higher and applying (28) and (29), we have

VP(p) = uC +
ξ

r + ξ

(
(1 − α)VP(p) + αWP(p)

)
. (30)

Under the difficult issue, the proposer offers xP and the responder rejects the offer. Therefore,
WP(p) satisfies

WP(p) =pλdt
(
ū + e−rdt(ξdtVP,c(1) + (1 − ξdt)V̂P,c(1))

)
+ (1 − pλdt)e−rdt

(
ξdtZP(p + dp) + (1 − ξdt)WP(p + dp)

)
.

(31)

Cancelling the terms with order dt2 or higher, applying (28) and (29), and reorganizing yields

λp(1 − p)W ′
P(p) = pλ(ū + V̂P,c(1)) + ξ(1 − α)VP(p) − (pλ + r + ξ(1 − α))WP(p). (32)

Equations (30) and (32) jointly determine the proposer’s value functions.
Now consider the responder. Similar to (30), the responder’s value function under the easy

issues are given by

VR(p) = vC +
ξ

r + ξ

(
(1 − α)VR(p) + αWR(p)

)
. (33)

Under the difficult issue, the proposer offers xP and the responder rejects the offer. Therefore,
WR(p) satisfies

WR(p) =pλdte−rdt(ξdtVR,c(1) + (1 − ξdt)V̂R,c(1))

+ (1 − pλdt)
(
ξdtv̄ + e−rdt(ξdtZR(p + dp) + (1 − ξdt)WR(p + dp)

))
.

Cancelling the terms with order dt2 or higher, applying (28) and (29), and reorganizing yields

λp(1 − p)W ′
R(p) = pλV̂R,c(1) + ξv̄ + ξ(1 − α)VR(p) − (pλ + r + ξ(1 − α))WR(p). (34)
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Equations (33) and (34) jointly determine the proposer’s value functions.
For p > pα, conflict arises in both the easy and the difficult policy issues. For the proposer,

VP(p) satisfies

VP(p) =pλdt
(
ū + e−rdt(ξdtVP,c(1) + (1 − ξdt)V̂P,c(1))

)
+ (1 − pλdt)e−rdt

(
ξdtZP(p + dp) + (1 − ξdt)VP(p + dp)

)
,

and WP(p) satisfies (31). Simplifying, we have

λp(1 − p)V ′P(p) = pλ(ū + V̂P,c(1)) + ξαWP(p) − (pλ + r + ξα)VP(p).

λp(1 − p)W ′
P(p) = pλ(ū + V̂P,c(1)) + ξ(1 − α)VP(p) − (pλ + r + ξ(1 − α))WP(p).

Similarly, VR(p) and WR(p) jointly solve

λp(1 − p)V ′R(p) = pλV̂R,c(1) + ξv̄ + ξαVR(p) − (pλ + r + ξα)WR(p).

λp(1 − p)W ′
R(p) = pλV̂R,c(1) + ξv̄ + ξ(1 − α)VR(p) − (pλ + r + ξ(1 − α))WR(p).

Equilibrium verification: Conflict equilibrium In the first type of equilibrium—conflict
equilibrium—the proposer induces conflict for any p when the current policy issue is a difficult
one. Therefore, if players currently faces a difficult policy issue and p = p

α
, there will be a

permanent conflict. Thus, the boundary conditions for Wi are given by Wi(p
α
) = Vi,c(p

α
). Then

from (30) and (33), we have

VP(p
α
) =

(r + ξ)uC + ξαVP,c(p
α
)

r + ξα
(35)

VR(p
α
) =

(r + ξ)vC + ξαVR,c(p
α
)

r + ξα
(36)

To fix the value of p
α
, first consider the responder’s incentives. First, under easy policy issues,

the responder must accept xc at p = p
α
. This condition is given by

vC + e−rdt(ξdtZR(p
α
) + (1 − ξdt)ẐR(p

α
))

≥ pλdte−rdt(ξdtVR,c(1) + (1 − ξdt)V̂R,c(1)) + (1 − pλdt)
(
ξdtv̄ + e−rdtVR,c(p

α
+ dp)

)
Deleting terms with order dt or higher and reorganizing yield

vC +
ξ

r + ξ
((1 − α)VR(p

α
) + αWR(p

α
)) ≥ VR,c(p

α
).

Plugging in WR(p
α
) = VR,c(p

α
) and (36), and simplifying yield

VR,n ≥ VR,c(p
α
).
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Interestingly, the incentive condition at the lower bound is identical to the one in the benchmark
model.

For p < p
α
, the responder’s incentive condition to reject xc is the same as the benchmark

model, which is
VR,n ≤ VR,c(p) for any p < p

α

Combining the above two incentive conditions yields that

VR,n = VR,c(p
α
),

which is identical to the benchmark model. Therefore,

p
α

= p =
(ξv̄ − (ξ + r)vC)(r + λ + ξ)

ξv̄λ
.

Next, consider the proposer’s incentive to offer xP at p = p
α
. Because he must prefer offering

xP to offering x0, his incentive condition is given by

VP,c(p
α
) ≥ e−rdt(ξdtZP(p

α
) + (1 − ξdt)ẐP(p

α
)).

Reorganizing yields

VP,c(p
α
) ≥

ξ

r + ξ
((1 − α)VP(p

α
) + αVP,c(p

α
))

Plugging in (35) and simplifying again, we have

VP,c(p
α
) ≥

ξ(1 − α)
r

uC.

Plugging in the value of p
α

and simplifying yields the condition for the equilibrium existence:

ξ(1 − α)
r + ξ

uC

ū
+

r + ξ

ξ

vC

v̄
≤ 1.

Equilibrium verification: “Avoiding the issue” equilibrium In the second type of equi-
librium—“avoiding the issue” equilibrium—the proposer offers x0 to induce compromise at
p = p

α
under difficult policy issues. Then, similar to the argument above, the value of VP(p

α
)

and WP(p
α
) satisfy the following system of equations:

VP(p
α
) = uC +

ξ

r + ξ

(
(1 − α)VP(p

α
) + αWP(p

α
)
)

WP(p
α
) =

ξ

r + ξ

(
(1 − α)VP(p

α
) + αWP(p

α
)
)

Similarly, VR(p
α
) and WR(p

α
) jointly solve

VR(p
α
) = vC +

ξ

r + ξ

(
(1 − α)VR(p

α
) + αWR(p

α
)
)

WR(p
α
) = v̄ +

ξ

r + ξ

(
(1 − α)VR(p

α
) + αWR(p

α
)
)

32



Solving the above systems yields the boundary conditions at p = p
α
:

VP(p
α
) = uC +

ξ(1 − α)
r

uC, VR(p
α
) = vC +

ξ

r
((1 − α)vC + αv̄),

WP(p
α
) =

ξ(1 − α)
r

uC, WR(p
α
) = v̄ +

ξ

r
((1 − α)vC + αv̄).

Having fixed the value functions, let us consider the responder’s incentives. First, under easy
policy issues, the responder must accept xc at p = p

α
. Same as the first type of equilibrium, this

condition is given by

vC + e−rdt(ξdtZR(p
α
) + (1 − ξdt)ẐR(p

α
))

≥ pλdte−rdt(ξdtVR,c(1) + (1 − ξdt)V̂R,c(1)) + (1 − pλdt)
(
ξdtv̄ + e−rdtVR,c(p

α
+ dp)

)
Deleting terms with order dt or higher and reorganizing yield

vC +
ξ

r + ξ
((1 − α)VR(p

α
) + αWR(p

α
)) ≥ VR,c(p

α
).

Plugging in the value of WR(p
α
) and VR(p

α
) and simplifying yield

VR,n +
ξα

r
(v̄ − vC) ≥ VR,c(p

α
).

Note that the left-hand side of the incentive condition is greater than that in the first-type of
equilibrium.

For p < p
α
, the incentive condition to reject xc is identical to the benchmark model (and the

first type of equilibrium), which is

VR,n ≤ VR,c(p) for any p < p
α

Combining the above two incentive conditions yields show that the responder’s incentive con-
dition is satisfied for any p

α
∈ [p

0
, p], where

p
0

=
(r + λ + ξ)(ξ(1 − α)v̄ − (r + ξ(1 − α))vC)

λξv̄
,

and
p =

(r + λ + ξ)(ξv̄ − (r + ξ)vC)
λξv̄

,

which is identical of the lower bound in the benchmark model.
Next, consider the proposer’s incentive to offer x0 at p = p

α
. Since he must prefer offering

x0 than offering xP, his incentive condition is given by

VP,c(p
α
) ≤ e−rdt(ξdtZP(p

α
) + (1 − ξdt)ẐP(p

α
)).

33



Reorganizing yields

VP,c(p
α
) ≤

ξ

r + ξ
((1 − α)VP(p

α
) + αWP(p

α
))

Plugging in the value of WP(p
α
) and VP(p

α
) and simplifying again, we have

VP,c(p
α
) ≤

ξ(1 − α)
r

uC,

which is identical to the incentive condition in the first type of equilibrium, except the direction
of the inequality reversed. As p

α
decreases, the above inequality becomes weaker (i.e., it sat-

isfies under a broader range of parameter). Therefore, the incentive condition is the weakest if
we set p

α
= p

0
. Plugging in p

α
= p

0
and simplifying yield

ξ(1 − α)
r + ξ

uC

ū
+

r + ξ(1 − α)
ξ

vC

v̄
≥ 1 − α.

7.4 Model without delay

A Proposer (P) and Responder (R) repeatedly bargain over multiple issues. Time t ∈ [0,∞)
is continuous and the horizon is infinite. The arrival rate of a new issue is ξ. Thus over time
interval [t, t + dt) a new issue arrives with probability 1 − e−ξdt ≈ ξdt. When a new issue
arrives, the Proposer announces a proposal x ∈ X = {x0, xC, xP}. We interpret x0 as the status-
quo position, xC as the compromise position, and xP as the Proposer’s most preferred position.
After the proposal is made, the responder chooses whether to accept or reject x. If the responder
accepts, then the issue is resolved with position x. If the responder rejects, then the proposer
chooses whether to attempt to overturn the rejection of x or not. If P does not attempt to
overturn, then the issue is resolved with the status quo position x0. If P attempts to overturn
then the issue is overturned at rate θλ. If the issue is overturned, then it is resolved with position
x. If P chooses to overturn and is not successful before the next issue arrives, then the issue is
not resolved and position x0 remains. We assume all decisions happen instantaneously and all
payoffs are realized when the new issue arrives.

Whether or not the rejection is overturned depends on the proposer’s ability θ ∈ {0, 1},
which can be either high θ = 1 or low θ = 0. In particular, if the proposer’s ability is high, then
R’s rejection is overturned at rate λ. Otherwise, if his ability is low then a rejection is never
overturned. Both players are symmetrically uninformed about the proposer’s ability. Let pt be
the common prior belief at time t that the proposer’s ability is high. The assumption that the
proposer has the same information about his ability as the responder applies if all parties are
symmetrically informed about the proposer’s previous bargaining skills.

For simplicity we assume that players receive utility from the issue at the time when the
current issue is replaced by the new one. The utility depends on what position the issue was
resolved in. If the issue has been resolved with position x, then the payoffs are uP(x) and uR(x).
If the issue has not been resolved, then the status quo is retained and utilities are uP(x0) and
uR(x0).
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We assume that R strictly prefers x0 to xP, and similarly, P strictly prefers xP to x0. We
normalize utility of the players’ such that uP(x0) = uR(xP) = 0. Also, let uP(xP) = ū, uP(xC) =

uC, uR(x0) = v̄ and uR(xC) = vC. We assume that 0 < uC, vC. Finally, utility is discounted at a
rate r > 0.

We show that without delay there exist a qualitatively similar equilibrium to the case of
delay. The key difference is the calculation of the bounds on p.

Proposition 7 There exists an equilibrium when there are multiple issues in the model with no
delay as follows.

χ(p) =

xc if p ∈ [p, p]

xP otherwise.
A(p) =

{x0, xc} if p ≥ p

{x0} if p < p,

where

p =
(v − vC)(r + λ + ξ)

vλ

p =
uCr(λ + r + ξ)

[(ū − uC)(r + λ) − ξuC]λ
.

The proof follows exactly as before, but with slightly modified payoffs.

Permanent Conflict We first derive the recursive payoffs that would arise if p = 1 and there
is permanent conflict, i.e., the proposer offers xP in every period, which the responder always
rejects. The issue only becomes resolved if the proposer is able to overturn the rejection, before
a new issue arrives. This benchmark case turns out to be an important building block of the
equilibrium value function.

Define Vi,success(1) to be the player i’s value function if the issue has successfully been over-
turned and a new issue is being awaited when p = 1. The next issue arrives which occurs with
probability ξdt on the time interval [t, t + dt). Then

VP,success(1) = ξdt[ū + e−rdtVP,challenge(1)] + (1 − ξdt)e−rdtVP,success(1)

VR,success(1) = e−rdt[ξdtVR,challenge(1) + (1 − ξdt)VR,success(1)]

Using the fact that e−rdt ≈ 1 − rdt and dropping higher order terms implies

VP,success(1) =
ξ

ξ + r

(
ū + VP,challenge(1)

)
,

VR,success(1) =
ξ

ξ + r
VR,challenge(1).

If the issue has not successfully been overturned, but has been rejected and being challenged,
then with probabiilty ξdt the issue is replaced with the new one, and with probability λdt the
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challenge is successful. We denote these value functions by VP,challenge(1) and VR,challenge(1),
respectively.

VP,challenge(1) = λdte−rdtVP,success(1) + (1 − λdt)e−rdtVP,challenge(1)

VR,challenge(1) = λdte−rdtVR,success(1) + ξdt[v̄ + e−rdtVR,challenge(1)] + (1 − λdt − ξdt)e−rdtVR,challenge(1)

These together imply:

VP,success(1) =
ξ(λ + r)

r(r + λ + ξ)
ū, (37)

VR,success(1) =
ξ2

r(r + λ + ξ)
v̄, (38)

VP,challenge(1) =
ξλ

r(r + λ + ξ)
ū, (39)

VR,challenge(1) =
ξ(r + ξ)

r(r + λ + ξ)
v̄. (40)

When p = 0, the proposer never overturns the rejection (that is, λ = 0 in equations (39) and
(40)), and thus the value functions are

VP,challenge(0) = 0, (41)

VR,challenge(0) =
ξ

r
v̄. (42)

The player i’s value function Vi,challenge(p) is the convex combination of Vi,challenge(1) and Vi,challenge(0).
To understand this, note that the players’ never change their actions in the future: Regardless of
the outcome, P always proposes xP which R rejects. Therefore,

VP,challenge(p) = pVP,c(1) + (1 − p)VP,c(0) = pū
λξ

r(r + λ + ξ)
, (43)

VR,challenge(p) = pVR,c(1) + (1 − p)VR,c(0) =
ξv̄

r

(
1 −

pλ
r + λ + ξ

)
. (44)

No Conflict The second important benchmark case is where no conflict occurs. In this case,
the proposer offers the compromise outcome xC, and the responder accepts the offer x0 and xC

but rejects xP.
No learning occurs, and hence the payoffs do not depend on the belief p.

VP,compromise = ξdt[uC + e−rdtVP,compromise] + (1 − ξdt)e−rdtVP,compromise

VR,compromise = ξdt[vC + e−rdtVR,compromise] + (1 − ξdt)e−rdtVR,compromise]

Simplifying gives:

VP,compromise =
ξ

r
uC, (45)

VR,compromise =
ξ

r
vC. (46)
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Incentive compatibility follows exactly as before. Below we characterize the key bounds.

Upper bound on p We can find p̄ as it is the p such that the proposer is just indifferent
between conflict and compromise. This is

ξ

r
uC = λpdte−rdtVP,success + (1 − λpdt)e−rdt ξ

r
uC.

The above equation is given by the smooth pasting condition. Simplifying gives

p̄ =
uCr(λ + r + ξ)

[(ū − uC)(r + λ) − ξuC]λ
.

This is less than one as long as

uC

ū
≤

λ

λ + r + ξ
. (47)

Lower bound on p The lower bound on p is such that the responder is just indifferent between
compromise and conflict and this gives

ξ

r
vC = VR,challenge(p),

and hence,

p =
(v − vC)(r + λ + ξ)

vλ
.

This is less than 1 as long as

vC

v
≥

r + ξ

r + λ + ξ
.

Further, we require p ≥ p. This implies

vC

v
≥

[(r + λ)(ū − uC) − (r + ξ)uC]
(r + λ)(ū − uC) − ξuC

.

Note that p is greater than zero as long as vC/v < 1, which is true by assumption.
The boundaries given in Proposition 7 are as illustrated below in Figure ??. Note that

compared with figure 3 the only difference is that the set of parameters sustaining compromise
is smaller due to less incentive to compromise because of delay effects.
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