

# Imperfect Macroeconomic Expectations: Theory and Evidence

Discussion by Jessica A. Wachter

April 3, 2020

#### Motivation



- ► Full information rational expectations is an increasingly untenable assumption
  - Qualitative implications of the best FIRE models are way off.
  - ► However, non-FIRE models involve a "wilderness."
- A literature studies deviations from FIRE based directly on surveys of macroeconomic expectations
  - ► Coibion and Gorodnichenko (2015)
  - ► Bordalo, Gennaioli, Ma, Shleifer (Forthcoming)

CG and BGMS directly map moments of from surveys into underlying explanations for failure of FIRE.

Perhaps survey evidence can tame the wilderness.

## Brief summary of survey evidence



- ightharpoonup Agents forecast  $z_t$  (inflation or unemployment).
- ▶ Terminology:
  - ▶ Revisions:  $\mathbb{E}_t[z_{t+k}] \mathbb{E}_{t-1}[z_{t+k}]$
  - ightharpoonup Errors:  $z_{t+k} \mathbb{E}_t[z_{t+k}]$ .
- ▶ CG: When  $\mathbb{E}$  is for the median, revisions forecast errors with a positive sign (under-reaction).
- ▶ BGMS: When  $\mathbb{E}$  is for an individual, revisions sometimes forecast errors with a negative sign (over-reaction), and sometimes with a positive sign.

## Regressions at the 3-quarter horizon



▶ Regressions of  $z_{t+k} - \mathbb{E}_t[z_{t+k}]$  on  $\mathbb{E}_t[z_{t+k}] - \mathbb{E}_{t-1}[z_{t+k}]$ .

|            | Unemployment |           | Inflation   |           |
|------------|--------------|-----------|-------------|-----------|
|            | Full sample  | 1984–2017 | Full sample | 1984–2017 |
| $K_{CG}$   | 0.74         |           | 1.52        |           |
|            | (0.23)       |           | (0.42)      |           |
| $K_{BGMS}$ | 0.32         | 0.40      | 0.14        | -0.26     |
|            | (0.11)       | (0.15)    | (0.12)      | (0.05)    |

#### This paper



- ▶ Main message: these moments from survey data do inform theory, but not in the way we might first think.
- Three exercises
  - ► Section 2–3: Summary of evidence, additional tests.
  - Section 4: A model reconciling seemingly contradictory findings in the survey evidence, taking the DGP as given.
  - Section 5: Put the model in GE (!). Main conclusions go through.

#### Evidence from a VAR



- ► The authors augment the survey evidence with evidence from a VAR using shocks to unemployment and inflation.
- Consider

$$x_t = \alpha + \sum_{i=1}^{I} \gamma_i x_{t-i}^{IV} + \beta_0 \epsilon_t + u_t$$

where  $x_t$  could be the underlying series or its forecast, and  $\epsilon_t$  is a shock.

 $ightharpoonup x_{t-i}^{IV}$  are instrumented regressors, so  $\gamma_i$  correctly measures the response of  $x_t$  to  $x_{t-i}$ .

# Evidence from a VAR (cont.)





#### The model



 $\triangleright$  Agents forecasts  $z_t$ , where

$$(1-\rho L)z_t = \epsilon_t \sim N(0,1).$$

▶ Agent *i* observes signal  $s_{i,t}$ , where

$$s_{i,t}=z_t+\frac{u_{i,t}}{\sqrt{\tau}}.$$

(dispersed private information).

► The agent believes

$$(1 - \hat{\rho}L)z_t = \epsilon_t$$

(over, or under-extrapolation) and

$$s_{i,t} = z_t + \frac{u_{i,t}}{\sqrt{\hat{\tau}}}$$

(over, or under-confidence).

## Are these agents rational?



- ► Agents' beliefs are governed by Bayes rule (in this sense they are rational).
- ► If we put these agents into an economy with asset prices, asset prices would obey no-arbitrage
- ▶ However, not RE in the "communism of beliefs" sense.
  - ▶ The true DGP  $\neq$  subjective DGP
- Agents cannot learn the true DGP (in a sense they have dogmatic priors over  $\hat{\tau}$  and  $\hat{\rho}$ ).
- Also: is private dispersed information rational?

#### Results



Coefficient for individual forecasts

$$\mathcal{K}_{BGMS} \propto -\kappa_1( au^{-1} - \hat{ au}^{-1}) + \kappa_2(
ho - \hat{
ho})$$

Evidence: < 0 for inflation and > 0 for unemployment

► Coefficient for the aggregate forecast

$$K_{CG} \propto \kappa_1 \tau^{-1} + V_{\text{ind}} K_{BGMS}$$

Evidence: > 0.

► Measure of over-shooting:

$$K_{IRF} = \frac{\log(\hat{\rho} - \rho) - \log(\hat{\rho} - \hat{\lambda})}{\log \hat{\lambda} - \log \rho}$$

Evidence: > 1 (want big  $\hat{\rho}$ ).

#### Summary of results



- $K_{CG} > 0 \Rightarrow$  dispersed private information
  - Could  $K_{CG} > 0$  imply level-k thinking, higher-order doubts, or cognitive discounting?
  - ► No: beliefs eventually overshoot.
  - No:  $K_{BGMS} < 0$
- ▶ Overshooting and  $K_{BGMS} < 0 \Rightarrow$  over-extrapolation.
  - ► Could these also be explained by over-confidence?
    - No. Over-confidence does not affect over-shooting.
- ightharpoonup  $K_{BGMS} > 0$  (say, for unemployment)  $\Rightarrow$  underconfidence

## Comment 1: Is K = 0 the right null hypothesis?



Yes, provided the agents are running same Kalman filter as the authors.

- ightharpoonup K > 0 could be that the agent forgets the previous signal (Mullainathan, 2002).
- ightharpoonup K < 0 could be that the agent makes mistakes relative to Bayesian updating
  - ▶ If the forecast is a positive outlier (relative to the previous forecast) it is more likely to be an error. The truth will lie below the forecast.
  - Authors accept this (Winsorization).
  - Expectations a more extreme version of actionable beliefs (Giglio et al., 2020)

#### Comment 2: What is underconfidence?



- ► Moore and Healy (2008)
  - ▶ Difficult tasks: subjects over-estimate their own performance, but believe they are worse than others
  - ► Easy tasks: subjects under-estimate their own performance, but believe they are better than others.
- Explanation: not over or under-confidence but regression toward the mean.
  - ▶ When perfomance is high, subjects shade it downwards, and when it is low, they shade it upwards.
  - When the task seems difficult, subjects assume others found it less difficult.
  - ► When the task seems easy, subjects assume others found it less easy.
- This behavior is rational if agents assume they receive a noisy signal.

## Comment 3: What is over-extrapolation?



This paper:  $\hat{\rho} > \rho$ . Two potential cognitive foundations:

- 1. Extrapolation:
  - ► Recency effects (agents more likely to remember recent events) well-established in laboratory experiments.
  - ► Agents (incorrectly) extrapolate past stock price behavior to future stock returns (Barberis et al., 2015)

The recent past matters in investor decision-making.

- 2. Representativeness heuristic
  - ► Tendency of items to become representative of a class is well-documented in psychology (Tversky and Kahneman, 1973)
  - Stocks with high growth forecasts underperform (Bordalo et al., 2019)

## Comment 3: For over-extrapolation, look to asset prices



# Comment 4: Cognitive response to inflation decline





## Comment 4: Inflation series is problematic



- ► Inflation series not well-characterized by a VAR
- Professional forecasters (and consumers) are persistently wrong about inflation
- Suggests a different type of model might be needed.

#### Putting it together



What might a model eventually look like?

- This paper: dispersed private information, under-confidence, over-extrapolation.
- ▶ But how do we know  $\tau$ ,  $\hat{\tau}$ ,  $\hat{\rho}$ ?
- ▶ Why would these differ in different series?

Is this the correct explanation for, say, the failure of forward guidance?

#### Alternative view on what a model should have



- 1. Long-run experience effects.
  - Experience effects persist far longer than they should.
  - ► For example, inflation: Malmendier and Nagel (2016, 2020)
  - Back-of-the envelope suggests forecasters permanently influenced by the inflation of the 1980s.

Side benefit: endogenizes "private dispersed information"

- 2. Slow updating to new information, with eventual over-shooting (replaces under-confidence, over-extrapolation)
- 3. Representativeness heuristic, aka diagnostic expectations (replaces over-extrapolation)

## Evidence from laboratory free recall tasks



- The temporal context model ⇒ agents possess a persistent mental context.
- ► Agents possess associations
- The context and associations (themselves endogenous) influence what comes to mind.
- Context responds endogenously to features of the environment based on associations.

#### Retrieved context as an explanation



- ➤ Context is slow-moving ⇒ in the short run agents under-react to novel features of the environment
- If the novel features become the new normal, agent's context will update too much (over-shooting) ⇒ they temporarily forget what came before.
- Endogeneity of associations implies that agents beliefs can be self-reinforcing
  - Experience effects (very long-term under-reaction)
  - ▶ Representativeness heuristic (features of the environment can become over-associated with mental contexts).

#### Summary



#### Paper's message:

- Survey evidence a powerful tool for understanding where we are in the wilderness.
- But be cautious in interpreting reduced-form autocorrelations.
- ► There needs to be some mechanism (here a bias in persistence) leading to over-reaction.

#### My comments:

- ► The tractability and generality of this framework shows real promise
- But we lose something in cognitive foundations
  - Especially problematic if the statistical model is mis-specified.
- Ultimately, want to have as portable a cognitive theory as possible.