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Abstract

Do healthcare providers pick their patients? This paper uses patient-level administrative data on

skilled nursing facilities in California to estimate a structural model of selective admission practices in

the nursing home industry. I exploit within-facility covariation between occupancy and admitted patient

characteristics to distinguish admission patterns attributable to selective admission practices from those

attributable to heterogeneous patient preferences. In spite of anti-discrimination laws, I find strong

evidence of selective admission practices that disproportionately harm Medicaid-eligible patients with

lengthy anticipated stays. Counterfactual simulations show that enforcing a prohibition on selective

admissions would increase access for these residents at the cost of crowding out short-stay non-Medicaid

patients from their preferred facilities. I simulate two additional policies intended to mitigate selective

admissions: raising the Medicaid reimbursement rate and expanding capacity. I find the latter to be less

costly and more effective than the former.
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1 Introduction

Policymakers and academics have long been concerned with inequality in access to quality healthcare. Even

with equal geographic access, inequality can persist when providers can pick their patients. In particular,

providers facing capacity constraints or increasing marginal costs may choose to treat more profitable patients

while turning away less profitable ones.

This paper uses patient-level administrative data on residents of skilled nursing facilities (SNFs) to study

the role of selective admission practices in the nursing home industry.1 The United States has more than

15,000 nursing homes with approximately 1.4 million residents at any given time (National Center for Health

Statistics, 2017). The quality of these facilities varies substantially (Castle and Ferguson, 2010), and patients

may not all have access to the same quality of care. Patients’ rights activists (Carlson, 2005), policymakers

(Senate, 1984; Wright, 2002), and academics (Gruenberg and Willemain, 1982; Ettner, 1993; Uili, 1995;

Ching et al., 2015) have often accused SNFs of discriminating against patients who are poorer or sicker in

admissions. If true, these practices have important implications for the health outcomes of these patients

and may violate federal and state laws prohibiting Medicaid and disability discrimination.2

A number of factors incentivize selective admission practices in the nursing home industry. First, re-

imbursement rates can vary substantially depending on the payment source.3 For example, while facilities

are legally obligated to offer the same type and quality of care to their Medicaid and private-pay residents,

private-pay rates are nearly 30% higher than Medicaid rates on average. Second, since private and Medi-

caid reimbursements are typically fixed per-diems, SNFs are not fully compensated for the additional care

requirements of high-needs patients. Third, capacity constraints imply an opportunity cost to admissions.4

These opportunity costs can be substantial since some residents are expected to remain at the facility for

years, during which time their beds cannot be allocated to admit more profitable patients.

In order to measure the prevalence and impacts of selective admission practices, I estimate a structural

model of admissions in the nursing home industry that incorporates both residents’ preferences and facilities’

admission policies. Specifically, I model nursing homes as multiproduct firms (Sullivan, 2017; Wollmann,

2018) facing capacity constraints (Ryan, 2012; Ching et al., 2015; Kalouptsidi, 2014, 2018) that dynamically

adjust the types of patients they are willing to admit. Each facility considers each arriving patient and

decides whether to offer her admission based on her characteristics, the facility’s current census of residents,

1The terms “skilled nursing facility,” “nursing facility,” and “nursing home” carry various meanings in different contexts.
I use these interchangeably to refer to facilities certified by the Centers for Medicare & Medicaid Services to provide skilled
nursing and related services (see 42 U.S.C. §1395i and §1396r). Importantly, these do not include assisted living facilities, which
do not provide the same degree of health care services but are sometimes referred to as nursing homes in the vernacular.

2Being unable to access facilities that perform well on quality metrics such as staffing ratios and deficiencies is expected to
result in worse health outcomes along a number of dimensions, including rates of mortality, infection, and re-hospitalization
(Schnelle et al., 2004; Backhaus et al., 2014; Lin, 2014; Foster and Lee, 2015; Friedrich and Hackmann, 2017).

3One form of selection on payment source is a provider’s decision about which insurance plans to accept. Recent literature
has explored the relationship between networks, plan choice, and negotiated rates (Ho, 2006, 2009; Shepard, 2015; Ho and Lee,
2018). The vast majority of SNFs, however, accept all three primary payers: Medicare, Medicaid, and out-of-pocket. This
paper examines selective admissions in the context of patients whose reimbursements are nominally accepted by the provider.

4The median facility occupancy in my sample is 88%, and my estimates suggest many facilities would quickly reach capacity
if they admitted all applicants. Firms may also face increasing marginal costs due to challenges in adjusting staffing levels and
other inputs. Such diseconomies of scale would raise the effective cost of admitting residents similarly to capacity constraints.
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and the facility’s beliefs about prospective residents that will arrive in the future.5 Patients then choose and

are admitted to their preferred facility offering admission.

The primary empirical challenge to estimating this model is that only realized admissions are observed.

Since realized admissions are determined by both facilities’ admission policies and patients’ preferences, it

is difficult to distinguish admission patterns attributable to selective admissions from those attributable to

heterogeneous patient preferences. For example, though dual-eligibles—i.e., residents eligible for Medicaid

in addition to Medicare—are admitted to lower quality facilities (Rahman et al., 2014a,b), this does not

necessarily imply Medicaid discrimination since the disparity could be also be explained by dual-eligibles

having weaker preferences for quality metrics. Prior work incorporating selective admissions has typically

done so by assuming that dual-eligibles can only choose from facilities with capacity remaining after all other

patients have been admitted (Nyman, 1985; Gertler, 1992; Ching et al., 2015).6

My model incorporates selective admissions as a source of variation in residents’ choice sets that is

unobserved when estimating demand. Unlike many other settings with availability variation (Hickman and

Mortimer, 2016), the set of facilities willing to admit a patient is never observed, and facilities’ willingness to

admit particular patients is plausibly correlated with those patients’ preferences.7 Agarwal (2015) addresses

a similar issue in estimating a model of the medical residency match using only data on observed matches.

While the dynamic and decentralized nature of admissions in the nursing home industry precludes the

methods in Agarwal (2015), it also provides an alternative source of identification: facilities facing capacity

constraints or increasing marginal costs are expected to increase the selectivity of their admission practices

as their census of residents increases (Greenlees et al., 1982). I therefore exploit within-facility covariation

between facility census and admitted resident characteristics to identify selective admission practices.

I first provide evidence that the composition of residents that facilities admit covaries with facility oc-

cupancy. I find that as facilities become more full, their newly admitted residents are less likely to be

Medicaid-eligible, have long anticipated stays, or require uncompensated care. This evidence suggests that

admission policies discriminate against residents with these characteristics. I then use machine learning

methods to aggregate residents’ many observable characteristics into a univariate desirability score for each

resident. Finally, I estimate the structural model of admissions in two stages. In the first stage, I estimate

resident preference parameters and facilities’ admission policies via maximum likelihood, where admission

policies determine residents’ choice sets, and resident preferences determine the realized admissions from

within those sets.8 In the second stage, I estimate the structural profitability parameters underlying facili-

5A facility’s census is its set of current residents.
6Hackmann (2018) does so by interacting an indicator for high occupancy with payer source in the utility model.
7Prior work on product availability has primarily focused on assortment variation (Tenn and Yun, 2008; Bruno and Vilcassim,

2008; Draganska and Klapper, 2011; Shah et al., 2015; Musalem, 2015; Crawford et al., 2017) and stock-outs (Anupindi et al.,
1998; Musalem et al., 2010; Conlon and Mortimer, 2013) in retail settings.

8Since admission policies are not observed, I parameterize them as a function of resident characteristics, unobserved resident
profitability, facility characteristics, and current facility census. I then compute the likelihood of each admission by integrating
over the probabilistic distribution of choice sets available to the resident. Sovinsky Goeree (2008) and Dubois and Saethre (2018)
apply similar methods, respectively parameterizing unobserved choice sets using observed advertising levels and markups.
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ties’ admission policies by matching moments in the data to those implied by optimal admission policies.9

These second-stage estimates allow me to compute facilities’ optimal admission policies in counterfactual

simulations. As in the reduced form, selective admission practices in the structural model are identified from

the relationship between facilities’ censuses and realized admissions.

My structural estimates indicate that 19% of California’s SNF residents are not admitted to their first-

choice facility and that 40% of care-days are spent at facilities other than the resident’s first choice.10

Medicaid-eligible residents with very long anticipated stays fare particularly poorly and are denied admission

to their most-preferred facility nearly 50% of the time. While this suggests significant admissions discrimina-

tion against Medicaid-eligible residents, I also find that Medicaid-eligible residents have weaker preferences

for facility staffing levels, meaning that heterogeneous preferences also contribute to admission disparities.

However, this preference disparity is much smaller than when demand is estimated under the assumption

that selective admissions do not occur. Therefore, failing to account for selective admission practices leads

the econometrician to significantly misestimate both demand elasticities and welfare measures.

I use my estimated model to simulate the effects of three policies intended to improve access to high-

quality facilities: mandating that facilities practice “first come, first served” (FCFS) admissions, raising the

Medicaid reimbursement rate, and increasing capacity at facilities with excess demand from Medicaid-eligible

residents. Each of these relates to policies that have been considered or implemented in various states.11

My simulations indicate that FCFS admissions would lead to welfare gains that residents value equivalently

to .20 hours (1.1 standard deviations) of registered nurse (RN) care per day on average. These gains accrue

primarily to Medicaid-eligible residents with lengthy anticipated stays, who experience increased access

under FCFS, and come partially at the expense of non-Medicaid short-stay patients, who are sometimes

crowded out of their preferred facilities under FCFS. Raising the Medicaid reimbursement rate has similar

distributional effects: access for Medicaid-eligible residents improves slightly but does so largely at the

expense of non-Medicaid residents.12 Targeted capacity increases, on the other hand, benefit both groups. I

find that adding 800 beds (an 11% increase) to facilities with excess demand in the San Diego area leads to

welfare gains for both Medicaid (.13 RN hours per day) and non-Medicaid residents (.06 RN hours per day)

and is substantially more cost-effective than raising the Medicaid reimbursement rate.

While this paper specifically examines nursing homes, concerns about providers picking their patients

9While the admission policies in the first stage approximate facilities’ optimal admission policies, they are not computed as
the solutions to facilities’ optimal control problems. Therefore, the first-stage estimates cannot be used to simulate facilities’
optimal admission policies under counterfactual government policies. Computing optimal admission policies in the second stage
requires solving facilities’ Bellman equations at each step in the GMM minimization (Rust, 1987) since common conditional
choice probability methods (Hotz and Miller, 1993; Hotz et al., 1994; Pakes et al., 2007; Bajari et al., 2007; Arcidiacono et al.,
2016) are precluded by the fact that admission decision are not directly observed.

10I include only facilities with available beds when computing these rejection rates.
11Examples include FCFS admissions (e.g., Connecticut General Statutes 19a-533), raising Medicaid reimbursement rates (e.g.

California Assembly Bill No. 1629), limiting private-pay rates (e.g., Minnesota Statutes 256B.47 and North Dakota Century
Code 50-24.4), and regulating facility capacities through Certificate of Need (CON) laws (e.g., Connecticut Statutes 19a-638
and Rhode Island General Laws 23-17-44) and bed-buybacks (e.g., Oregon Revised Statutes 410.070 and Louisiana Revised
Statutes §40:2116). While CON laws and bed-buybacks reduce capacity, counterfactual simulations of increasing capacity may
still be informative about the impacts of these policies.

12My counterfactual simulations hold facilities’ characteristics fixed. Raising Medicaid reimbursement rates may also lead to
additional welfare gains by incentivizing facilities to increase their quality (Hackmann, 2018).
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are not limited to the nursing home industry. Providers may face similar incentives in other parts of the

healthcare industry, especially those in which patient desirability is heterogeneous and providers face capacity

constraints or diseconomies of scale. For example, previous work has expressed similar concerns about

specialty hospitals (Cram et al., 2008) and dialysis clinics (Desai et al., 2009). The trend toward fully

and partially capitated systems, such as Accountable Care Organizations, may also exacerbate financial

incentives for providers to pick their patients (Watnick et al., 2012). Finally, an increasing reliance of

patients, insurers, and regulators on outcome-based quality metrics may incentivize providers to pick their

patients in order to boost these metrics (Dranove et al., 2003). Occupancy rates and other sources of variation

in providers’ policies may help to identify related models of providers picking their patients in these other

healthcare markets. Moreover, the broader method of explicitly modeling suppliers’ decisions to participate

in demanders’ choice sets, and of exploiting variation in suppliers’ optimality conditions to identify suppliers’

policies, may be extended to other contexts and industries with endogenous unobserved choice sets.13

The remainder of the paper is organized as follows. Section 2 provides background on the nursing home

industry. Section 3 describes the data used in my analysis, and Section 4 provides preliminary evidence of

selective admissions. Section 5 describes my model, and Section 6 gives my structural estimation procedure.

Sections 7 and 8 respectively present model estimates and counterfactual simulations. Section 9 concludes.

2 Industry Background

This paper examines Medicare-certified skilled nursing facilities, which are certified by the Centers for Medi-

care and Medicaid Services (CMS) to provide a broad range of care, including skilled nursing care, specialized

rehabilitative services, medically-related social services, and treatment for the mentally ill and mentally re-

tarded (42 U.S.C. §1395i). Because SNFs are equipped to provide such a broad range of care, they often

serve a census of residents with highly varied care requirements and lengths of stay.

Most SNF residents are initially admitted in order to receive rehabilitative and other therapy care follow-

ing a discharge from an acute care facility. The majority of these residents are discharged to the community

after receiving short-term rehabilitative therapy related to their preceding hospital stay. However, some

continue to require long term care and continue to reside at the facility in order to receive daily nursing care

and additional therapy care as needed.

The remainder of this section provides background on reimbursements in the industry, details facilities’

incentives to pick their patients, and describes the history of regulations against selective admission practices.

13Many salient examples involve discrimination, including transportation (Ge et al., 2016), lending (Ladd, 1998; Blanchard
et al., 2008; Hanson et al., 2016), employment (Heckman, 1998; Bertrand and Mullainathan, 2004), and real estate (Kain and
Quigley, 1972; Page, 1995; Ahmed and Hammarstedt, 2008). In all cases, the suppliers’ optimality condition must reflect the
incentives and institutional details specific to the industry.
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2.1 Reimbursement

There are three primary sources of reimbursement for nursing home care: Medicare, private, and Medicaid.

Medicare only reimburses SNF care for Medicare enrollees with a physician-certified need in relation to

a recent acute care hospital stay lasting at least three inpatient days.14 Medicare covers 100% of the first

20 days of qualifying care, requires coinsurance after 20 days ($119 per day in 2006), and is capped at 100

days. Medicare reimbursements are adjusted based on both patient care requirements and the cost of inputs

in the facility’s market. Because Medicare only covers post-acute care, residents covered by Medicare tend

to require rehab and therapy care that is costly to provide and is therefore reimbursed at a high rate.

Residents who are ineligible or have exhausted their Medicare coverage and are not yet eligible for

Medicaid—i.e. have not exhausted personal financial resources—are “private pay.” Long term care insurance

is uncommon (Brown and Finkelstein, 2007, 2009, 2011), so most private pay residents pay out of pocket.

Private rates are per-diem and are usually lower than Medicare reimbursement rates, though the care required

by private pay patients tends to be less intensive than the post-acute care covered by Medicare. Private

rates are typically not adjusted based on a patient’s care requirements, though they do vary within a facility

based on whether a resident’s room is private or shared.

Once a resident over 65 has exhausted her private financial resources, she qualifies for Medicaid if she

continues to require a level of care that cannot reasonably be obtained outside of a skilled nursing facility.

This usually means that the resident must demonstrate a need for around-the-clock availability of skilled

nursing care that could not be provided by alternatives such as outpatient or home health care. The vast

majority of facilities in my sample (94.34%) are Medicaid-certified and are therefore legally obligated to

accept Medicaid reimbursements. Medicaid reimbursement rates in California are not adjusted according to

individual residents’ care requirements and are usually lower than private rates (Figure 3).

Table 1 shows that while only 26.01% of residents ever utilize Medicaid coverage, a large majority of SNF

care (65.58% of days) is reimbursed by Medicaid. This is both because Medicaid-eligible residents tend to

have longer stays and because long stays are more likely to exhaust private resources and result in Medicaid

eligibility. Table 2 details the transitions that residents make between their admission and discharge payer

sources. Nearly 58% percent of days are from residents who transition between payer sources during their

stay, most commonly from Medicare to Medicaid.15

2.2 Incentives to Discriminate

Nursing homes face a number of incentives to pick their patients. First, as discussed above, reimbursement

rates can vary substantially by payment source. In particular, Medicaid reimbursement rates tend to be

14For additional details, see https://www.medicare.gov/coverage/skilled-nursing-facility-snf-care.
15Note that 29.11% of residents in the sample are enrolled in Medicare Advantage. Insurers participating in Medicare

Advantage are not required to submit claims data to CMS. Therefore, I impute the part of Medicare Advantage enrollees’ stays
that were covered by their Medicare Advantage plan. I impute these values using predictions based on resident assessment
data. I train the predictive function using machine learning methods on data for Traditional Medicare enrollees since Medicare
Advantage plans are required to cover SNF care when Traditional Medicare would have.
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substantially lower than either the private rate or the Medicare reimbursement rate. Therefore, facilities

may have strong financial incentives to screen for current and future Medicaid eligibility. In fact, some

facilities require prospective residents to submit financial documentation that can be used to forecast when

a resident is likely to become eligible for Medicaid based on an anticipated spend-down of assets on care.

Facilities can even purchase commercial “admission analysis” software to assist in making these projections.16

In addition to variation in reimbursements, there may also be substantial uncompensated variation in the

cost of providing care to different patients. For example, patients with behavioral problems or diagnoses such

as dementia or obesity may require more staff time and facility resources than other residents. In California,

only Medicare reimbursements are adjusted according to a patient’s anticipated resource utilization. Facilities

receive no additional compensation for high-needs patients on days not covered by Medicare, and even

Medicare reimbursements may not perfectly insure the facility against heterogeneous care requirements.

Legal prohibitions (42 CFR §483.10(a)(2)) and organizational challenges also prevent facilities from achieving

higher margins by providing low-reimbursement patients lower quality care (Grabowski et al., 2008).

Facilities also face dynamic incentives to pick their patients. Most directly, each facility’s capacity is

constrained by its number of CMS-certified beds, so each admitted patient reduces the capacity available

to admit more profitable patients in the future.17 Figure 1 gives the capacities and occupancy rates of the

SNFs in my sample. The average capacity is approximately 100 beds, and the median occupancy rate is

88%. The industry’s high occupancy rates suggest that many facilities could quickly reach their capacity

constraint if they were to admit additional residents. Facilities facing excess demand will therefore want to

ration their capacity by turning away less desirable residents.

Furthermore, length of stay can vary substantially across residents. While most stays are brief, some

residents stay at the facility for years. Figure 2 shows the distribution of stay lengths in my sample. While

most stays are relatively brief—the 50th percentile resident stays just 25 days—the standard deviation of

their lengths is large (333 days). I show in Appendix C that this variation is broadly predictable using

only information that was plausibly observable at admission. Facilities practicing selective admissions may

therefore be particularly wary of admitting low-margin residents predicted to stay for a very long time,

especially since involuntarily discharging residents without cause is illegal (42 CFR §483.15(c)).

In addition to capacity constraints, facilities may also face diseconomies of scale. The primary input cost

for nursing homes is staffing, and meeting demand above what long-term staff are equipped to handle may

bear additional cost. For example, nursing cost report data from California indicate that facilities pay an

average wage premium of 37% when hiring temporary registered nurses (RNs).18 Temporary staff may also

be less productive or require additional training in order to be effective. Such increasing marginal costs may

lead facilities to ration admissions even when capacity constraints are unlikely to bind in the future.

16For example, American HealthTech’s Admission Analysis module advertises being able “to project total cost of care per
resident, as well as how much each will generate in revenue...” See https://www.healthtech.net/admissions-analysis.

17Capacity adjustments are rare because increasing capacity requires certification of new beds by CMS in addition to the
space and staffing required to accommodate the additional beds.

18This premium is respectively 34% and 23% when weighting by a facility’s reported full time and part time hours.
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2.3 History and Regulation

State and Federal governments have passed a large number of regulations restricting selective admission

practices on the basis of either disability or payer-status.

Section 504 of the Rehabilitation Act of 1973 prohibits nursing homes receiving either Medicare or

Medicaid reimbursements from discriminating in admissions on the basis of disability.19 Wagner v. Fair

Acres Geriatric Center, 859 F. Supp. 776 (E.D. Pa. 1994), upheld these protections by finding that Fair

Acres Geriatric Center violated the Rehabilitation Act when it denied Wagner admission on the basis of the

behavioral difficulties resulting from Wagner’s Alzheimer’s.20 The Americans with Disabilities Act of 1990,

which defines disability to include “a physical or mental impairment that substantially limits one or more

major life activities” (42 U.S. Code 12102 (1)(A)), extended protection against disability discrimination to

places of “public accommodation,” including all nursing homes (42 U.S. Code §12181 (7)(F)).21 Furthermore,

courts have held that nursing homes constitute “dwellings” under the Fair Housing Act (see Carlson (2012),

Section IV), and therefore inquiries into a patient’s disability when determining admission may be subject

to additional scrutiny and regulation under the Fair Housing Act (24 CFR 100.202 (C)).22

There have also been multiple attempts to restrict and prohibit admissions discrimination against Medicaid-

eligible patients. Section 1909(d)(1) of the 1977 Social Security Amendments made it a felony to solicit or

receive payment in addition to Medicaid or Medicare reimbursements as a condition of admission or contin-

ued care. Despite this prohibition, discrimination against Medicaid patients continued. As Chairman of the

Special Committee on Aging, Senator John Heinz observed the following in his opening remarks of Senate

Hearing 98-1091 on “Discrimination Against the Poor and Disabled in Nursing Homes” (Senate, 1984):

Findings of a recent committee investigation show that in some areas of this country, up to 80

percent of what are called federally certified nursing homes are reported to actively discriminate

against medicaid beneficiaries in their admission practices. These acts of discrimination are a

flagrant violation of U.S. law.

A common avenue for this discrimination was “duration of stay clauses,” which required prospective residents

to agree to forego enrollment in Medicaid for a period of time as a condition of admission. In response to

these practices, the 1987 Nursing Home Reform Amendments explicitly prohibited facilities from requiring

residents to waive rights to Medicare or Medicaid benefits (42 CFR 483.15 (a)). Furthermore, the Reform

Amendments required that nursing homes provide a standardized admission agreement that more clearly

19The Act charges that individuals with disabilities not be “subjected to discrimination under any program or activity
receiving Federal financial assistance or under any program or activity conducted by any Executive agency or by the United
States Postal Service” (29 U.S.C. §794 (a)).

20However, refusing admission based on disability is legal if the patient’s care requirements exceed the ability of the facility:
Grubbs v. Medical Facilities of America, Inc., 879 F. Supp. 588 (W.D. Va. 1995) held that Medical Facilities of America was
legally justified in denying readmission to Grubbs, whose worsening condition qualified her under Medicaid for sub-acute care,
on the basis that her care requirements exceeded what Medical Facilities of America’s nursing facilities were certified to provide.

21The Act lists “hospital, or other service establishment” as examples of places of public accommodation, and the 1994
Supplement to the Americans with Disabilities Act Title III Technical Assistance Manual states that “nursing homes are
expressly covered in the title III regulation as social service center establishments.”

22See Carlson (2012) for the basis and implications of applying the Fair Housing Act “‘no inquiry” rule to SNFs.
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notified prospective residents of their rights (Ambrogi, 1990). Many states, including California (SB 1061,

1997), passed laws standardizing admission agreements to this effect (see CA Health & Safety Code §1599.60-

84).23 As a result, all California admissions agreements contain the following clause:

You should be aware that no facility that participates in the Medi-Cal program may require any

resident to remain in private pay status for any period of time before converting to Medi-Cal

coverage. Nor, as a condition of admission or continued stay in such a facility, may the facility

require oral or written assurance from a resident that he or she is not eligible for, or will not

apply for, Medicare or Medi-Cal benefits.

Selective admission practices have received less regulatory attention since the Reform Amendments,

however evidence suggests that such practices may have continued in forms less discernable by policymakers.

In response to complaints made to the Health Care Finance Administration and the Office of Civil Rights,

the Health and Human Services Office of the Inspector General (HHS OIG) investigated the degree to which

the use of financial screening led to defacto Medicaid discrimination in 1999. HHS OIG found that while 70%

of hospital discharge planners surveyed reported that nursing homes denied access for financial reasons either

somewhat or very often, less than 4% of Medicaid officials surveyed agreed (Brown, 2000).24 In spite of this,

the report concludes that “financial screening may cause access problems for some Medicaid beneficiaries,

but these problems do not appear to be widespread.” Financial screening continues today, and patients’

rights groups continue to claim that these and other practices constitute illegal Medicaid discrimination.25

The conflicting responses in the HHS OIG report and the continued concern of patients’ rights activists

in spite of existing legal protections suggest that the prevalence of discriminatory admission practices after

1987 are not well understood. A primary contribution of this paper is to identify and quantify the form,

severity, and impacts of continued selective practices.

3 Data

I combine a number of administrative datasets from the Centers for Medicare & Medicaid Services (CMS)

to construct a panel of resident stays at California SNFs between 2004 and 2006. Resident assessments from

the nursing home Minimum Data Set (MDS) form the base of this panel. Federal law (42 CFR §483.20)

requires nursing homes to complete assessments of each resident at regular intervals, starting with admission

and ending at discharge. These assessments collect a wide range of demographic and clinical information

that nursing staff use to develop a care plan and that are reported to CMS for inclusion in the MDS. CMS

uses these data to construct publicly available quality metrics and to determine Medicare reimbursements.

23In addition to regulating admission agreements, many states have passed laws directly regulating admission practices.
Connecticut began requiring nursing homes to serve residents on a first come, first serve basis in 1980, and Ohio prohibited
admission discrimination against Medicaid eligible patients until 80% of a facility’s census is on Medicaid in 1983.

24Hospital discharge planners are hospital employees responsible for helping patients plan their discharge. One role of discharge
planners is to help patients find a skilled nursing facility.

25See, for example, this California Advocates for Nursing Home Reform newsletter.
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I augment the MDS with Medicare and Medicaid claims and enrollment data that identify payment

sources throughout a resident’s stay.26 I identify the days of each stay that were reimbursed by Medicare

using Medicare SNF claims from the Medicare Provider and Analysis Review (MedPAR) files.27 Using acute

care claims from MedPAR, I am also able to identify the likely hospital from which residents were discharged

to a SNF for 98% of stays reimbursed by Traditional Medicare. I use three different data sources to identify

Medicaid reimbursements: the Medicaid Analytic eXtract Long Term Care (MAX LT), Medicare-Medicaid

Linked Enrollee Analytic Data Source (MMLEADS), and Beneficiary Summary File (BSF). The MAX LT

consists of Medicaid long term care claims data, and the MMLEADS and BSF provide monthly Medicaid

eligibility data.28 In addition to information on Medicare and Medicaid enrollment, the BSF also provides

9-digit zip codes for all Medicare eligible individuals. I use these in conjunction with prior residence data

from the MDS to geocode patients’ prior residences.29

I also utilize a number of publicly available datasets on nursing facilities in my analysis. First, I com-

pile facility characteristics from the Online Survey, Certification and Reporting (OSCAR) database and

LTCFocus.org.30 I augment these with Medicaid reimbursement rates and cost data from California’s Med-

icaid Cost Reports.31 Because private price data are not surveyed directly, I infer private prices using the

revenue and quantity data from the cost reports (Huang and Hirth, 2016).

Table 3 enumerates the data sets used in my analysis, and Tables 4 and 5 give summary statistics for

the resident and facility-level data, respectively.32 Figures 5a and 5b map the distribution of residents and

facilities at the state level and in the Los Angeles area. These maps reflect the geographic granularity of

these data that plays a significant role in my analysis since most patients are admitted to SNFs that are

close to their prior residence (Figure 4).

4 Preliminary Evidence of Selective Admission Practices

This section provides reduced form evidence of selective admission practices by examining how the composi-

tion of a facility’s admitted patients covaries with its occupancy. If facilities tend to become more selective

26Combining multiple CMS datasets requires resolving inconsistencies between the datasets. I have largely based my construc-
tion of an aggregated panel on the Residential History File (Intrator et al., 2011), which resolves inconsistencies by preferencing
claims data over assessment data. A full description of the data cleaning process can be obtained from the author on request.

27Since Medicare Advantage plans are not required to report their claims for inclusion in MedPAR, I use MDS data to impute
Medicare Advantage coverage for Medicare Advantage enrollees’ stays. Specifically, I use machine learning methods (Appendix
E) to fit a function that predicts Traditional Medicare enrollees coverage using MDS, and use this function to impute coverage
for Medicare Advantage enrollees. The key assumption underlying this imputation method is that the relationship between
MDS variables and qualification for coverage under Medicare and Medicare Advantage is the same.

28I combine all three sources because Medicaid Managed Care plans do not always report their claims to CMS (Cheh, 2011).
In such cases, Medicaid enrollees are still likely to appear as dual-eligibles in the MMLEADS and BSF. Additionally, I do not
have Medicaid claims data for years after 2007.

29When prior residence is absent in both the BSF and MDS, I use the location of the hospital that discharged the resident
to a SNF as an imputed location of prior residence.

30Data available on LTCFocus.org are provided by The Shaping Long Term Care in America Project at the Brown University
Center for Gerontology and Healthcare Research, which is funded in part by the National Institute on Aging (1P01AG027296).

31The reimbursement rate and cost report data were collected from the California Department for Health Care Services and
Office of Statewide Health Planning and Development websites, respectively.

32I exclude facilities from my analysis that do not file cost reports as SNFs in California since these facilities are likely to be
specialized facilities, such as sub-acute care facilities or institutions specializing in mental diseases.
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as they become more full, then we expect patient characteristics associated with admission primarily when

facilities have low occupancy to be undesirable characteristics.33 We similarly expect residents whose char-

acteristics are associated with admission when facilities are relatively less full to be less desirable residents.

Subsection 4.1 develops this intuition in a model with one facility and one possible discharge rate for patients.

Subsection 4.2 then presents my reduced form estimates. I first show the relationship between admitted pa-

tient characteristics and facility occupancy. Then, I use machine learning methods to aggregate residents’

many characteristics into a univariate desirability score for each resident.

4.1 Model: One Facility and One Discharge Rate

The following model gives intuition for why we expect a facility facing capacity constraints to be more

selective as it becomes more full. Consider a lone nursing home with a capacity of b beds. Prospective

residents arrive according to a Poisson process with rate parameter λA and have a profitability Πi drawn

from a known distribution F . Upon arrival, each patient instantaneously applies for admission at the facility,

and the facility instantaneously determines whether to admit the patient. If the facility chooses to admit

the patient, the facility receives an upfront payoff Πi, and the patient resides at the facility until she is

discharged according to an exponential process with discharge parameter λD. If a patient arrives when the

facility is full, the patient is automatically rejected.

Fix a probability space and filtration Ft representing the arrival, admission, and discharge processes.

The facility chooses an adapted admission plan {aτ}, where aτ ⊆ R is the set of profitabilities that would

qualify a patient for admission at time τ .34 In other words, a resident i arriving at τ is admitted if and only

if the facility has an available bed and Πi ∈ aτ . At each time t, the facility’s admission plan maximizes the

present discounted value of future admitted Πi:

E

 ∑
{i:τAi ≥t,NτA

i
<b,Πi∈aτA

i
}

exp
(
ρ(τAi − t)

)
Πi

∣∣∣∣∣∣∣Ft
 , (1)

where ρ is the discount rate, Nτ is the facility’s level of occupancy at τ , and τAi is the time that i arrived.

Since arrivals and discharges are memoryless and residents are indistinguishable after admission, the

facility need only condition its policy on its current level of occupancy. Furthermore, because the facility

should always prefer to admit more profitable residents to less profitable ones, optimal admission policies

must be of the form aτ = [Πτ ,∞) for some threshold profitability Πτ . Together, these imply that the

facility’s policy function is a threshold rule for each level of occupancy, where arriving residents are only

admitted if their profitability exceeds the threshold rule for the facility’s current level of occupancy. I denote

33The assumptions underlying this inference are discussed in Subsection 4.2.
34That the plan is adapted requires that it be measurable with respect to Fτ .
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this rule by a function Π : {0, 1, 2, . . . , b− 1} → R. Then the facility’s value function is:

V (Nt) = max
Π

E

 ∑
{i:τAi ≥t,NτA

i
<b,Πi≥Π(N

τA
i

)}

exp
(
ρ(τAi − t)

)
Πi

∣∣∣∣∣∣∣Nt
 . (2)

The corresponding Bellman equation and optimal policies are:35

ρV (Nt) = Ntλ
D (V (Nt − 1)− V (Nt)) + λA max

Π

∫ ∞
Π

(Π + V (Nt + 1)− V (Nt)) dF (Π), (3)

Π(Nt) := V (Nt)− V (Nt + 1). (4)

The Bellman equation (3) is intuitive: Ntλ
D is the arrival rate of a discharge, and V (Nt− 1)− V (Nt) is the

change in the value function if a resident is discharged. Similarly, λA is the arrival rate of a new prospective

resident, Π is the payoff received if the resident is admitted, and V (Nt + 1)− V (Nt) is the opportunity cost

of admitting the resident.

Theorem 1. Threshold rule Π is increasing in Nt.

Proof. See Appendix D.1.

Theorem 1 indicates that the facility’s threshold rule Π is increasing in occupancy. Intuitively, as the

facility’s occupancy increases, the likelihood that the facility will reach capacity and need to reject future

profitable residents increases. Since the facility admits an increasingly censored distribution of residents

as it becomes more full, we expect the average profitability of admitted residents to rise as the facility

becomes more full. Correspondingly, the set of Nt such that Π > Π(Nt) is nested and increasing in Π. It

follows that the average Nt at which residents with profitability Π are admitted is weakly increasing in Π.

Therefore, residents whose characteristics are associated with admission when facilities are relatively less full

can be inferred to be less desirable. This intuition underlies both the reduced form and structural estimation

procedures in this paper.

4.2 Reduced Form Estimates

There are two important identifying restrictions required to infer resident desirability from the covariation

between facility occupancy and admitted patient characteristics. The first is that the composition of residents

seeking admission at the facility does not evolve over time in a way that is systematically correlated with

the facility’s occupancy.36 I measure potential sources of such correlations in Appendix D.2 and find that

they are small relative to my estimated results. Second, I assume that resident preferences for facilities are

not affected by facilities’ current occupancies. This assumption is not testable, however its violation is likely

35The Bellman equation and optimal policies are derived for a more general case in Appendix B.
36In the toy model above, this is satisfied by the assumption that F (Π) is unchanging.
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to attenuate rather than strengthen my results, since the residents I find to be most desirable—short-stay

Medicare residents—are also the residents that most plausibly prefer lower occupancy rates. First, these

patients disproportionately require rehab and therapy care, which may suffer in quality when resources are

spread thin due to a high current occupancy rate. Second, occupancy at admission is more likely to be

perceived as transitory by residents with longer anticipated stays.

The most straightforward test of selective admissions is to use facility occupancy as a covariate in pre-

dicting the characteristics of admitted residents:

yijt = βj + βoccocc
%le
jt + βhhi + εijt, (5)

where yijt is a given characteristic of interest of resident i admitted to facility j at time t, occ%lejt is facility

j’s percentile occupancy within its own distribution at time t, and hi are other resident characteristics for

which we wish to control.37 Under the null-hypothesis that facilities are not picking their patients, we expect

βocc = 0 for all characteristics. Table 6 and Figure 6 show the results of such regressions for a number of

characteristics that are anticipated to be undesirable, including residents’ length of stay, use of Medicaid, and

use of pharmaceuticals suggestive of challenging care requirements (e.g. antipsychotics). The magnitudes of

these estimates suggest that selective admissions are correlated most strongly with reimbursement rates and

length of stay, and to a lesser degree with care requirements.

While these regressions do provide evidence of selective admission practices, they do not coherently

aggregate the many characteristics that may affect a resident’s desirability. To accomplish this, I flip the

regressions in (5) and instead predict facility occupancy at admission using individual characteristics. The

intuition for this regression is that it approximates the answer to the question: “How full is facility j, on

average, when it admits a resident with characteristics ci?” If facilities admit an increasingly desirable

distribution of residents as they become more full, then the answer to this question is monotonic in the

desirability of residents with characteristics ci.
38

I use gradient boosted decision trees described in Appendix E to fit E
[
occ%lejt |aij , ci

]
, where aij signifies

that resident i was admitted at facility j and ci are the characteristics of resident i.39 This machine learning

method allows me to approximate the conditional expectation as a flexible nonlinear function that minimizes

the square of prediction error out of sample. I allow the model to condition flexibly on the admitting facility

and hundreds of resident characteristics that were likely observable at time of admission. To reduce over-

fitting, I regularize the model’s complexity to minimize its cross-validated out of sample fit. This procedure

is analogous to cross-validating the penalty parameter in a LASSO or Ridge regression and allows me to use

37In other words, values of 0 and 1 for occ%lejt respectively correspond to facility j’s lowest and highest occupancy days.
38The assumptions in Subsection 4.1 guarantee an increasing relationship between profitability and occupancy rate. When

allowing for multiple discharge rates or interactions between resident profitability, however, this increasing relationship is
plausible but not guaranteed since multiple census compositions can have the same level of occupancy. Therefore, in interpreting
the results in this section, I implicitly assume that the realized distribution of censuses and interactions between resident
profitabilities are sufficiently well-behaved that this intuitive relationship between occupancy and selectivity holds on average.

39The results are qualitatively similar if using a linear regression: Medicaid utilization, lengthy anticipated stays, and high
care requirements are associated with lower expected occupancy at admission.
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a high dimensional input without over-fitting.

To construct a “desirability score” zi for each resident i that is comparable across residents, I take the

average of i’s predicted occupancy percentile at admission for each facility in California:

zi :=
1

|JCA|
∑
j∈JCA

Ê
[
occ%lejt |aij , ci

]
(6)

where Ê
[
occ%lejt |aij , ci

]
is the predicted occupancy percentile for i admitted at j, and JCA includes all

California facilities. Residents with higher zi scores are those who facilities tend to agree are more desirable,

and those with lower zi scores are those who facilities tend to agree are less desirable.

Figure 7 shows how the distribution desirability scores zi vary with different characteristics. Subfigures

(a) and (b) respectively show that Medicaid eligible residents and residents with longer anticipated stays tend

to have much lower desirability scores than their non-Medicaid and short-stay counterparts.40 Subfigure (c)

shows that both low- and high-staffing facilities admit high-desirability residents but that low-desirability

residents are admitted primarily at low staffing facilities. Subfigure (d) shows that the machine learning

model has predictive power: low-desirability patients are much more likely to be admitted in low occupancy

states than high occupancy ones.41 I project these desirability scores onto a linear model of resident charac-

teristics in Appendix D.3 in order to provide additional intuition and interpretation of the patterns discerned

by the machine learning algorithm.

5 Theoretical Model

In this section I present a model of selective admissions in the nursing home industry that informs my

estimation procedure in Section 6. I first provide an overview of the matching process. I then expand on the

resident choice problem and the facility admission control problem. Finally, I define an equilibrium concept

for beliefs and strategies.

5.1 Overview of the Matching Process

I model the industry through the following decentralized matching process. Patients requiring skilled nursing

care arrive to the market according to a Poisson process with rate parameter λA. The characteristics of these

residents (ci) are distributed according to a known distribution Fc and include:

1. loci: location of the patient’s prior residence.

40Note that a score of zi = 50 is the theoretical upper bound for a desirability score, since such a score would suggest that a
resident is always admitted regardless of occupancy level.

41The out of sample R2 for the predictive function is .25.
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2. Ji: The set of all facilities that are within 20 kilometers of loci, i.e. Ji := {j : d(loci, locj) ≤ 20km}.42

3. {uij}j∈Ji : The resident’s utility from admission at each facility.

4. {Πij}j∈Ji : The resident-specific payoff that each facility j expects to receive from admitting i.43

5. φi: The resident’s stayer-type governing the resident’s exponential discharge rate, which we denote

λDjφi for each facility j.44 In my empirical exercise, I allow φi to be one of Φ = {short, long, very long},

and I assign φi using information that was likely observable at admission. (See Appendix C.)

Upon i’s arrival to the market, all facilities in Ji instantaneously observe ci and independently decide whether

or not to offer admission to i. In offering admission to resident i, facility j is choosing to be in i’s choice set,

which I denote Oi.45 Resident i considers all j′ ∈ Oi and is admitted to her preferred facility j ∈ Oi:46

j = arg max
j′∈Oi

uij′ . (7)

It is important to note that “admitted” in this context means that a resident actually receives care at a

facility. While this terminology is common in the healthcare literature, it differs from uses in other contexts,

such as college admissions, where “admitted” signifies an offer to attend.

This model aims to reflect the process by which many residents are actually matched with a SNF. The

process by which an acute care patient is discharged to a SNF often involves a hospital discharge planner

assessing which facilities are likely to accept the patient. Historically, these determinations were made by

a combination of the discharge planner’s knowledge of local facilities and facilities’ responses to referrals.

Electronic systems have increasingly allowed discharge planners to quickly solicit expressions of interest

in admitting a patient from a large number of local SNFs. Healthcare information technology company

Allscripts describes one such system in a February 2008 press release (accessed October 2018):

“Allscripts enables a detailed electronic referral to be sent to selected locations across its pro-

prietary network of 90,000 providers, and interested facilities reply, often within minutes. The

patient and family then receive a discharge packet that details their facility choices, making their

decision more transparent and informed.”

This set of facilities that express interest in the resident are represented by Oi in the model.

42In my empirical estimation, I limit potential admissions to facilities within 20 kilometers for computational reasons. The
vast majority of residents in the sample (87.4%) have an identified location of prior residence within 20 kilometers of their
chosen facility. I treat the arrival and admission of residents who either do not have an identified location of prior residence or
who have a location of prior residence that is outside of the 20km radius as an exogenous Poisson process for each facility.

43I assume that {Πij}j∈Ji are distributed with finite expectation and unbounded support.
44An exponential discharge process implicitly assumes that facilities do not learn gain additional information about a resident’s

likely length of stay after admission, including advance notice of discharge, and that facilities cannot affect a resident’s rate of
discharge. While there are strong legal protections against early discharge, recent work has shown some evidence that providers
may speed up discharge rates when more full (Hackmann and Pohl, 2018). If facilities have some control over discharge rates,
it would likely reduce facilities’ incentives to pick their patients.

45Since Oi is a subset of the full set of local facilities, Ji, it is analogous to a consideration set in the marketing and inattention
literatures (Sovinsky Goeree, 2008).

46If Oi = ∅, then i is not admitted to any facility.
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Another natural way to model the matching process in the nursing home industry is for each arriving

resident to instantaneously and iteratively submit applications to facilities in decreasing order of her prefer-

ence until she finds a facility willing to admit her. If facilities’ willingness to admit a resident are unaffected

by knowing whether other facilities wished to admit her, then the matches yielded by this algorithm will

be identical to matches yielded by the matching algorithm described in this section.47 Assumption 1 in the

next section satisfies this requirement for equivalence. This suggests that an alternative way to think about

a prospective resident i willing to accept an offer of admission from j is as an “applicant” at j under this

alternative matching algorithm.

5.2 Facility Admission Control Problem

In this section, I present the facility’s admission control problem and optimal admission policy. I model

facilities as profit maximizers that observe the characteristics ci of each arriving local resident requiring care

and determine whether to make the resident an offer of admission based on her characteristics, the facility’s

own current census of residents, and the facility’s beliefs about potential residents it may admit in the future.

5.2.1 Assumptions

I make two key assumptions that greatly simplify the optimal control problem:

Assumption 1. Facility j conditions its belief about the probability that resident i will accept an offer of

admission only on characteristics ci.
48 I denote this belief by µj(ci) := P (uij ≥ uij′ ∀j′ ∈ Oi|ci) and give its

equilibrium condition in Subsection 5.3.

Assumption 2. Facility j receives a lump-sum payoff Πij when admitting resident i and continuous flow

payoff Ψj(Njt) based on its current census counts Njt := (Njtφ)φ, where Njtφ denotes the number of residents

of stayer-type φ residing at j at time t.

Assumption 1 is not entirely innocuous. While I have already assumed that the stochastic arrival process

of residents requiring care is unchanging, the likelihood of any given resident i accepting an offer of admission

at j is also a function of the offers made by other facilities in Ji. Assumption 1 prohibits facility j from

using the past and present censuses of facilities in Ji to inform its beliefs about the likelihood that residents

who arrive to the market in the future will accept an offer of admission from j. This assumption is satisfied

if facilities lack either the information or sophistication to forecast competitors’ future admission policies.

There are reasons to believe that Assumption 1 approximates reality. First, it is implausible that fa-

cilities know the exact current census of all other local facilities since facilities are not required to disclose

this information publicly. In my interviews with nursing staff and facility managers, none have suggested

47Non-equivalence could stem from facilities updating their beliefs about other facilities’ future admission policies based on
other facilities’ admission decisions for the currently arrived resident.

48In fact, this restriction need only apply to j’s beliefs about i that may arrive in the future. This is because once i has
arrived, the probability that this specific i will accept admission is not relevant to whether facility j would like to admit her.
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that they track the censuses of other facilities in an attempt to anticipate competitors’ future admission

policies. Furthermore, most Ji are large: approximately 50 facilities on average. Therefore, weak or negative

correlation in the selectivity of other facilities in Ji may attenuate discernible variation in the probability

that offers made by j will be accepted.49

Assumption 2 imposes that facility profits can be decomposed into resident-specific components, Πij ,

and a census component, Ψj(Njt). The resident-specific components encompass the variation in residents’

profitabilities based on their health and payment characteristics and does not vary with facilities’ current

census. I parameterize Πij in Section 6. That Πij is a lump-sum is without significant loss of generality. I

show in Appendix B.3 that if facilities were to receive resident-specific flow payoffs instead of lump-sums,

then facilities’ admission policies are identical to those in a translated game with lump-sums. Specifically,

if facilities were to receive flow payoff πij(t − τAi ) at time t for resident i who arrived at τAi , the facility’s

optimal policies are identical to the case in which it instead received upfront payoffs Πij equal to the i’s

expected admission-discounted πij :

Πij := EτDi −τAi

[∫ τDi −τ
A
i

0

exp (−ρτ)πij(τ)dτ

]
, (8)

where τDi is i’s time of discharge, and ρ is the discount rate. Intuitively, this follows from facilities’ risk

neutrality and the assumption that the πij flow payoff neither affects nor is affected by any other current or

future residents. Together, these imply that a facility’s incentive to admit a resident is the same whether it

expects to receive a flow payoff or an equivalent value lump-sum payoff.

Assumption 2 restricts that all non-separable payoffs occur only through Njt, the census count of the

different stayer-types. This prohibits, for example, that particularly sick patients increase the marginal

costs of other patients. On the other hand, Ψj(Njt) may encompass or approximate a number of plausible

interactions such as diseconomies of scale.50 I parameterize Ψj(Njt) in Section 6.

5.2.2 Admission Control Problem

Facility j chooses an adapted admission plan {ajτ}, where j offers admission to resident i arriving at τ if

and only if j has a bed available and ci ∈ ajτ . At each time t, the facility’s admission plan maximizes the

present discounted value of future admitted Πij :

E

 ∑
{i:τAi ≥t,‖NjτA

i
‖1<bj ,ci∈ajτA

i
,uij≥uij′ ∀j′∈Oi}

exp
(
ρ(τAi − t)

)
Πij +

∫ ∞
t

exp(−ρτ)Ψj(Njτ )dτ | Fjt

 , (9)

49Appendix D.2 estimates the relationship between local facilities’ censuses to be relatively weak. However, Assumption 1
might still be concerning in concentrated markets in which stochastic variation in the policy of one facility may have non-trivial
impacts on the likelihood that offers from competing facilities are accepted.

50For example, if short-stay residents are likely to disproportionately consume resources required for rehab care and long-stay
and very-long-stay residents are more likely to consume resources required for long-term care, then Ψj(Njt) could represent
increasing marginal costs in these respective resources through linearly separable increasing marginal costs in the number of
short-stayers and the number of long- and very-long-stayers.
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where τAi denotes the time that i arrives to the market, bj is the capacity of facility j, F jt is a filtration

representing j’s information, and the expectation is taken given j’s beliefs.51 I show in Appendix B.1 that

Assumptions 1 and 2 imply that the optimal admission policy can be characterized by threshold profitabilities

for each stayer-type, {Πjφ}φ, that vary only with the facility’s current census counts Njt. In other words,

facility j offers admission to i arriving at time t if and only if Πij ≥ Πjφi(Njt).
52 Theorem 2 gives these

threshold policies explicitly.

Theorem 2. Facility j offers admission to resident i if and only if:

Πij ≥ Πjφi
(Njt) := Vj(Njt)− Vj(Njt + 1φi), (10)

where Vj is the facility’s value function and 1φ denotes a unit-vector increment of element φ. The facility’s

corresponding Bellman equation is:

ρVj(Njt) = Ψj(Njt) +
∑
φ

λDjφNjtφ
(
Vj(Njt − 1φ)− Vj(Njt)

)
+
∑
φ

λAjφ

∫
max

{
0,Π + Vj(Njt + 1φ)− Vj(Njt)

}
dFΠ

jφ(Π),

(11)

where λAjφ := λAP (j ∈ Ji, φi = φ) and FΠ
jφ(Π) :=

∫
{ci:Πij≤Π} µj(ci)dFc (ci|j ∈ Ji, φi = φ).

Proof. See Appendix B.2.

Theorem 2 is central to my estimation procedure. In particular, the optimal admission policy (10)

does not vary with other facilities’ censuses, the facility’s own history, or anything about the facility’s

current census other than counts Njt. I have emphasized Assumptions 1 and 2 in this section as they

underlie this result. Without Assumption 1, optimal policies would need to incorporate anticipated dynamic

variation in other facilities’ policies, and without Assumption 2, optimal policies might need to incorporate

additional characteristics and even arrival times of current residents. I discuss the implications of relaxing

these assumptions further in Appendix B.4 and find that relaxing either assumption even slightly leads to

an explosion in the size of facilities’ policy-relevant state spaces.

5.3 Equilibrium Concept and Beliefs

I define an equilibrium to be a set of strategies {Πjφ} and beliefs {µj} such that for each facility j, {Πjφ}φ
satisfies optimality under Theorem 2 given µj , and µj satisfies the following condition:

µj(ci) =

∫
1 {uij ≥ uij′ ∀j′ ∈ Oi−j} dP (Oi−j) , (12)

51In particular, the measure with respect to which the expectation is taken must satisfy Assumption 1.
52In terms of (9): ajτ = {ci : Πij ≥ Πjφ(Njt)}.
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Oi−j := Oi \ {j} (13)

where P (Oi−j) is the long-run joint distribution of offers made by other facilities implied by {Πjφ}.53

Intuitively, (12) imposes a consistency requirement on the beliefs in Assumption 1. Assumption 1 implies

that facilities behave as if playing a single-agent game in which the arrival process of residents willing to accept

an offer of admission is constant, and (12) requires that these beliefs be consistent with the unconditional

distribution of other facilities’ offers.

6 Structural Estimation

In this section, I present my procedure to estimate a structural model of admissions in the nursing home

industry. The key challenge to estimation is that only realized admissions are observed. This entails estimat-

ing demand with unobserved choice set restrictions. In particular, I cannot infer that a patient’s admitting

facility was her most preferred local facility since she may have preferred a different facility to which she

was denied admission.54 Analogously, this data restriction also entails estimating admission policies and the

structural parameters in facilities’ admission control problems without directly observing facilities’ actions.

I address this challenge by explicitly modeling patients’ choice sets as being determined by facilities’

admission policies. In a first stage, I parameterize facilities’ threshold rules as functions of facilities’ char-

acteristics and current census counts so that a facility is in a patient’s choice set if the patient’s expected

profitability exceeds the facility’s threshold at its current census. Given a patient’s choice set, I let the

patient’s choice probabilities be distributed according to a logit demand model in which the patient’s pref-

erences for each facility are functions of the facility’s characteristics, its distance from the patient’s home,

and the amount the resident expects to pay out of pocket at the facility. Preferences over characteristics are

allowed to differ for Medicaid-eligible patients so that disparate admission patterns for dual-eligibles may

potentially be attributed to heterogeneous preferences.

I estimate this first stage via maximum likelihood, where the likelihood of an observed admission is

computed by integrating the patient’s logit choice probabilities over the distribution of choice sets that may

have been available to her given her characteristics and the current censuses of her local facilities.55 As in

Section 4, the key restriction allowing patient preferences and selective admissions to be separately identified

is that current facility censuses are excluded from residents’ preferences. Because admission policies vary

with current census counts but patient preferences do not, the relationship between facilities’ censuses and

53The P (Oi−j) corresponding to {Πjφ} is unique. This follows from the fact that unbounded support for Πij and nonzero
discharge rates imply that the Markov process characterizing the joint evolution of all facilities’ states given {Πjφ} has a unique
recurrent class.

54Availability variation has been addressed in the marketing and economics literatures (see Hickman and Mortimer (2016)),
and my model of unobserved choice set variation mirrors these approaches. Two unusual features of this setting are that choice
sets are never observed and that they are are plausibly correlated with the preferences of individual demanders. Therefore,
common methods to estimate the product availability process in a first stage are not feasible.

55Note that even given the parameterizations of facilities’ threshold rules and residents’ profitabilities, I allow for uncertainty
in residents’ choice sets by allowing a component of each resident’s profitability to be unobserved by the econometrician. The
probability of each choice set is then computed using the parametric distribution of this unobserved component of profitability.
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realized admission patterns identifies facilities’ admission policies.

While this first stage identifies both residents’ preference parameters and facilities’ admission policies,

the estimates cannot be used to simulate how facilities would change their threshold rules in response to

counterfactual policies. Only the first of my three counterfactuals—the strict enforcement of first come,

first served admission policies—can be simulated using these first-stage estimates.56 I therefore estimate

the structural profitability parameters underlying facilities’ admission policies in a second stage. In my

chosen parameterization, these parameters characterize the baseline profitabilities of different stayer-types.

I estimate the second stage by matching admission patterns implied by optimal policies computed from

Theorem 2 to moments in the data.57 These structural parameters allow me to simulate how facilities would

adjust their admission policies in response to counterfactual government policies by recomputing admission

policies and beliefs that satisfy the equilibrium optimality and belief conditions given in Section 5.3.

The remainder of this section details the first and second stage estimation procedures.

6.1 First Stage

In the first stage, I jointly estimate resident preferences and facility admission policies via maximum likeli-

hood. I denote by Xi the set of observed data related to resident i and the facilities in Ji. These observed

data include the resident’s health and demographic characteristics (hi), stayer-type (φi), and desirability

score (zi), as well as the characteristics and states of all of the resident’s local facilities ({(Xj , Njt)}j∈Ji).58

I parameterize resident i’s indirect utility for each facility j ∈ Ji by:

uij = Xjβ
X
i + f(Dij , β

D)− αE[OoPij ] + ξj + εuij , (14)

βXi = βX + hiβ
Xh, (15)

where Xj are the characteristics of facility j, Dij := d(loci, locj) is the distance from i’s prior residence to

facility j, E[OoPij ] is the admission-discounted average daily out-of-pocket payment that i expects to make

at j, ξj is facility quality unobserved to the econometrician, and εuij is Type-I Extreme Value distributed.

Rather than placing a parametric distribution on ξj , I include facility fixed effects:

Qj = Xjβ
X + ξj . (16)

These fixed effects encompass both the observed and unobserved components of facility quality. While fixed

effects greatly increase the computational burden of estimation, they allow me to capture unobserved quality

and help the model to match aggregate shares for each facility.

56Optimal admission policies need not be computed in this counterfactual since they are exogenously mandated to be FCFS.
57In order to reduce the computational burden of the second stage, I hold fixed first-stage estimates of residents’ preferences,

the relative profitabilities of residents within each stayer-type, and facilities’ beliefs about the arrival process of patients willing
to accept an offer of admission.

58The construction of the desirability score is detailed in Section 4.
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While this preference model does not include random coefficients, it does allow preferences over facilities’

characteristics to vary with patients’ health and demographic characteristics at admission. In particular,

I allow Medicaid-eligible residents to have different preferences over facilities’ staffing ratios of registered

nurses and licensed practical nurses. This allows the model to incorporate some preference heterogeneity

between low- and high-margin patients. Importantly, (14) does not allow preferences over a facility’s census

at time of admission. This is the key exclusion restriction that allows me to use within-facility covariation

between facility census and admitted patient characteristics to identify selective admission practices.

Given a choice set Oi, I denote the admission probability of resident i at facility j ∈ Ji by sOiij :

sOiij =


exp(XjβXi +f(Dij ,β

D)−αE[OoPij ]+ξj)∑
j′∈Oi

exp(Xj′βXi +f(Dij′ ,β
D)−αE[OoPij′ ]+ξj′)

if j ∈ Oi

0 if j /∈ Oi.
(17)

If Oi were observed, the likelihood of observing resident i admitted at facility j would be sOiij . However,

since Oi is not observed, the econometrician must integrate over the likelihood of all possible Oi. Denote i’s

admission at j by aij . Then the econometrician’s likelihood of observing resident i admitted at facility j is:

P (aij |θ1,Xi) =
∑

O∈2Ji\∅

P (Oi = O|θ1,Xi) s
O
ij , (18)

where 2Ji denotes the set of all subsets of Ji, θ1 are the parameters to be estimated governing residents’

preferences and facilities’ admission policies, and P (Oi = O|θ1,Xi) is the probability that the resident’s

choice set is Oi.

Since residents’ choice sets are determined by facilities’ admission policies, P (Oi = O|θ1,Xi) can be

expressed in terms of the admission policies of the facilities in Ji. In doing this, it is helpful to first scale Πij

so that it is more easily interpreted and compared across stayer-types.

Definition 6.1. Define π̃ij to be the average admission-discounted resident-specific flow profit from i at j:

π̃ij :=
(
ρ+ λDjφi

)
Πij . (19)

In other words, π̃ij is the unique constant flow payoff that, if received throughout resident i’s stay, is

expected to yield an admission discounted payoff of Πij . Because π̃ij is scaled in terms of flows, it is more

easily comparable across stayer-types than Πij . If the unit of time is days, then π̃ij is an average discounted

daily resident-specific profitability. By Theorem 2, facility j offers admission to resident i arriving at time t

if and only if:

π̃ij ≥ π̃jφi(Njt) :=
(
ρ+ λDjφi

)
Πjφi

(Njt). (20)
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Since neither π̃ij nor π̃jφi(Njt) are observed directly, I parameterize them:59

π̃ij = π̃(zi, φi; γπ)− επi , (21)

π̃jφ(Njt) = π̃(Njt, Xj , φ; γπ), (22)

where επi follows a standard normal distribution. The specific parameterization I use for π̃ is a polynomial

in zi and z%le
i with intercepts in φi. Similarly, I parameterize π̃ to include intercepts in φ and a polynomial

in E[zi|aij , Njt] and the difference between the average zi of j’s residents and the average zi of j’s local

community. I provide additional details on these parameterizations in Appendix F. Note that a consequence

of parameterization (21) is that π̃ij does not vary across facilities since zi, φi, and επi do not vary across

facilities.60 Therefore, variation in i’s admission offers at different facilities derives entirely from variation

across facilities in current threshold rules π̃jφi(Njt).

Another implication of each resident’s επi being shared by all facilities is that the set of possible choice

sets is much smaller than 2|Ji|. To see this, order facilities in Ji by decreasing willingness to admit residents

of type φi:

π̃(N1t, X1, φi; γπ) ≤ π̃(N2t, X2, φi; γπ) ≤ .... ≤ π̃(N|Ji|t, X|Ji|, φi; γπ) (23)

Then all possible choice sets are of the form [k] := {1, 2, ..., k}.61 By Theorem 2:62

P (Oi = [k]|θ1,Xi) = P
(
π̃ij ≥ π̃jφi(Njt) ∀ j ∈ [k], π̃ij < π̃jφi(Njt) ∀ j /∈ [k]|θ1,Xi

)
= P (π̃(zi, φi; γπ)− π̃(Nkt, Xk, φi; γπ) ≥ επi ≥ π̃(zi, φi; γπ)− π̃(Nk+1t, Xk+1, φi; γπ))

= Fεπ (π̃(zi, φi; γπ)− π̃(Nkt, Xk, φi; γπ))− Fεπ (π̃(zi, φi; γπ)− π̃(Nk+1t, Xk+1, φi; γπ)) .

(26)

Therefore the log-likelihood of observing resident i admitted at j is:63

log (P (aij |θ1,Xi)) = log

 |Ji|∑
k=j

s
[k]
ij P

(
Oi = [k]|γπ, γπ,Xi

) , (28)

where θ1 = {γπ, γπ, βD, βXh, α, {Qj}j}, Fεπ is the CDF of the standard normal distribution, and the rel-

evant terms are substituted from (24), (25), and (26).64 The parameters {βD, βXh, α, {Qj}j} characterize

59While it would be ideal to parameterize π̃ij and π̃jφi (Njt) with facility-specific functions, this is both computationally
infeasible and requires a large sample for each facility.

60While this is a consequence of my chosen parameterizations, it is not a requirement of my estimation procedure.
61It is straightforward to verify that if (20) holds for k—i.e. if k offers admission to i—then (20) holds for k′ < k. This relies

primarily on the assumption that επi is not facility-specific.
62For completeness:

P (Oi = ∅|θ1,Xi) = 1− Fε (π̃(zi, φi; γπ)− π̃(N1t, X1, φi)) , (24)

P (Oi = [|Ji|]|θ1,Xi) = Fε
(
π̃(zi, φi; γπ)− π̃(N|Ji|t, X|Ji|, φi)

)
. (25)

63In estimation, the econometrician must additionally condition on i being observed in the data (i.e., on Oi 6= ∅):

log (P (aij |θ1,Xi,Oi 6= ∅)) = log
(
P
(
aij |γπ , γπ ,Xi

))
− log

(
P
(
Oi = ∅|γπ , γπ ,Xi

))
. (27)

64The φ-specific intercept terms in π̃(zi, φi; γπ) and π̃(Njt, Xj , φ; γπ) are not identified since only their difference,
π̃(zi, φi; γπ)− π̃(Njt, Xj , φi; γπ), appears in the likelihood.
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residents’ preferences, γπ characterizes the relative profitabilities of residents within each stayer-type, and

γπ characterizes facilities’ admission thresholds.65

6.2 Second Stage

While the first-stage estimates do characterize facilities’ admission policies, they are not sufficient to simulate

how facilities would adjust their threshold rules in response to counterfactual government policies. Doing

so requires computing threshold rules as the solution to facilities’ admission control problems. I therefore

estimate the remaining primitives underlying facilities’ admission control problems in a second stage by

matching admission patterns implied by optimal admission policies to moments in the data.

The structural parameters I estimate in the second stage are ψ parameterizing Ψj(Njt):

Ψj(Njt) = N ′jtψ. (29)

The vector ψ gives a baseline profitability for each stayer-type. Intuitively, where the γπ in the first stage

identified the relative profitabilities of residents within each stayer-type, ψ identifies the levels of profitability

relative to not admitting the patient.66 Note that this specification includes neither heterogeneity in Ψ across

facilities nor diseconomies of scale. Therefore, selective admission practices under this specification primarily

reflect the opportunity costs to admissions that are due to facilities’ capacity constraints. Optimal threshold

rules may vary across facilities by capacity constraints and the arrival process of residents willing to accept

an offer of admission. They may also vary within facility over time with census counts.

I compute facilities’ optimal admission policies via policy function iteration. Computing optimal threshold

rules given Vj is direct from (20). On the other hand, computing Vj given admission policies {π̃jφ}φ requires

integrating over the facility’s beliefs about the profitability distribution of arriving residents willing to accept

an offer of admission, FΠ
jφ. In order to reduce the computational burden of the estimation procedure,

I simulate beliefs F̂Π
jφ using first-stage estimates of residents’ preferences and other facilities’ admission

policies.67 Additional details are provided in Appendix G. After substituting F̂Π
jφ into (11), Vj can be solved

in terms of {π̃jφ}φ as the solution to a system of equations.68

Denote the optimal admission thresholds solving facility j’s admission control problem by π̃j(Njt;ψ, θ̂1).

The admission probabilities implied by the model are:

P
(
aij |ψ, θ̂1,Xi

)
=

|Ji|∑
k=j

s
[k]
ij P

(
Oi = [k]|ψ, θ̂1,Xi

)
, (30)

65Heuristically, the preference parameters are identified off of admission patterns for patients with similar predicted choice
sets, while the admission policies are identified off the relationship between admission patterns and facilities’ censuses.

66In particular, ψ identifies the intercept terms that were not identified in the first stage. See footnote 64.
67Note that because beliefs F̂Π

jφ are fixed throughout the second stage estimation procedure, there is no guarantee that F̂Π
jφ

implied by our first stage policy estimates is the same as that implied by our second stage policy estimates. This is often the
case for two-step estimators, and ensuring internal consistency would require recomputing the beliefs and optimal policies as a
fixed point during the estimation procedure, which is computationally prohibitive.

68Solving (11) for Vj also requires {λAjφ} and {λDjφ}, which I estimate via maximum likelihood prior to the second stage.
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P
(
Oi = [k]|ψ, θ̂1,Xi

)
= Fεπ

(
π̃(zi, φi; γ̂π)− π̃k(Njt;ψ, θ̂1)

)
− Fεπ

(
π̃(zi, φi; γ̂π)− π̃k(Njt;ψ, θ̂1)

)
. (31)

I estimate ψ by matching the following moments in the data:69

E
[
1
{
a ≤ occ%lejt ≤ b, φi = φ

}]
, (32)

E
[
π̃(zi, φi; γ̂π)1

{
a ≤ occ%lejt ≤ b, φi = φ

}]
, (33)

for each φ ∈ Φ and (a, b) ∈ {(0, 1
3 ), ( 1

3 ,
2
3 ), ( 2

3 , 1)}, where occ%lejt is facility j’s percentile occupancy within its

own occupancy distribution.70 In other words, I match the degree to which residents of different stayer-types

and levels of profitability are admitted to facilities in low, middle, or high occupancy states.

7 Estimates

In this section, I present and discuss the demand and supply estimates from my model.

7.1 Demand Estimates

Table 9 presents the preference parameter estimates. Column 1 gives the estimates from the main specifi-

cation. These estimates indicate that residents are highly sensitive to the distance of a facility from their

previous residence: the average elasticity of demand with respect to distance is 4.15%. This high degree of

sensitivity is consistent with the prior literature estimating demand models for both nursing homes (Rahman

et al., 2014a; Hackmann, 2018) and hospitals (Tay, 2003; Ho, 2006; Ho and Pakes, 2014; Gowrisankaran et al.,

2015; Shepard, 2015). Residents may prefer closer facilities because of their likely proximity to the resident’s

family, friends, and community. It is also plausible that residents are less aware of distant facilities.71

The estimates also suggest that while all residents prefer facilities with higher nursing staff ratios, these

preferences are weaker for Medicaid-eligible residents. The average own-staffing elasticity of demand for

Registered Nurses (RNs) and Licensed Practical Nurses (LPNs) are respectively .91% and 1.21% for non-

Medicaid residents and .59% and .65% for Medicaid residents. This estimated preference disparity can be

interpreted in a number of ways. First, Medicaid-eligible residents may truly care less about staffing ratios

because their longer stays and differing disease diagnoses may benefit less from high staffing ratios than

residents who primarily utilize short-term rehab and therapy care. Alternatively, it may be that Medicaid-

eligible residents have similar preferences to non-Medicaid residents but are less able to identify and apply

to high-staffing facilities. For example, admission assessments from the MDS data indicate that Medicaid-

eligible residents are less likely to have present and responsible family members, which suggests that these

residents may have less assistance in selecting a facility. Lastly, if the model does not fully capture the

69As with the first stage, the econometrician must also condition i being observed in the data (i.e., on Oi 6= ∅).
70There are 18 moments in total, six for each of the three stayer-types.
71For example, the default for CMS’ Nursing Home Compare tool is to sort by distance. Because awareness is unobserved,

my model cannot distinguish true preference over distance from a lack of awareness and attributes both to preferences.
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extent of admissions discrimination against Medicaid-eligible residents, then estimates of Medicaid residents’

preference for staffing are likely to be biased downward. This is clearest when contrasting the demand

estimates from the main specification (Column 1) to those from a demand model without selective admission

practices (Column 3). The estimated average staffing elasticities of demand are substantially lower when

failing to account for selective admissions, especially for Medicaid-eligible residents: the average own-staffing

elasticity of demand for RNs and LPNs are respectively .74% and .81% for non-Medicaid residents and just

.3% and .06% for Medicaid-eligible residents.

I estimate price sensitivities to be very small: the average elasticity of demand with respect to out-of-

pocket expenditure is just .015%. Because I include facility fixed effects in the estimation, price sensitivity is

identified from variation in residents’ expected out-of-pocket payments at the same facility. Therefore, while

these low estimates may indicate a truly minuscule price sensitivity, they may also indicate that my model of

out-of-pocket expenditure does not align with the resident’s anticipated out-of-pocket expenditure. I discuss

the computation of expected out-of-pocket costs and potential concerns with identifying price sensitivity in

Appendix H.

7.2 Supply Estimates

Figure 8 depicts the relationship between resident-specific profitability π̃ij and desirability score zi. As

anticipated, profitability is generally increasing in desirability score. Figures 9 and 10 describe the estimated

first-stage policy functions, π̃(·; γ̂π). Figure 9 shows how facilities’ admission thresholds and corresponding

probabilities of making admission offers vary with facility occupancy. Specifically, Subfigure 9a depicts how

cutoffs increase with occupancy, and Subfigure 9b shows the corresponding decrease in offer probabilities

with occupancy. They also show that offer probabilities tend to decrease in anticipated length of stay.

Subfigures 9c and 9d show further that facilities that tend to admit patients with higher zi scores than their

local community (see Appendix F) are estimated to have higher cutoff rules and lower offer probabilities.

Figure 10 compares the model’s predicted relationship between occupancy and admission probabilities to

the data. Both the model and data agree that admission probabilities decrease with occupancy and that the

magnitude of this relationship increases with anticipated length of stay and Medicaid-eligibility.

Figure 12 gives the estimated distribution of residents’ preference ranks for their admitting facility. A

large majority of patients (81%) are admitted to their first choice facility, suggesting that selective admissions

do not affect the choice sets for most residents. The 19% of residents who are not admitted to their most-

preferred facilities are disproportionately Medicaid-enrollees with very long anticipated stays. In fact, just

51% of Medicaid very-long-stay residents are admitted to their first choice facility. Moreover, because these

residents tend to have lengthy stays, the impacts of selective admissions are much larger when measured by

days rather than residents: 40% of resident days are spent at facilities other than the resident’s first choice.

Due to the computational requirements of computing facilities’ optimal policies, I estimate the second
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stage only on the San Diego area.72 This region has 67 facilities and approximately 50 thousand arriving

residents in my sample. Figure 11 compares occupancy’s relationship to admission probabilities and admitted

patient profitabilities in the estimated model to the data. The estimated model matches the trends in the

data, but it does so less precisely than the first stage.73

8 Counterfactuals

In this section, I present the simulated impact of three counterfactual policies intended to prevent or mitigate

selective admission practices. The first is to prevent selective admissions by strictly enforcing that all facilities

adhere to “first come, first serve” (FCFS) admission policies. Because admission policies are fixed by the

regulator in this counterfactual, I am able to simulate the policy impacts for all of California using only

preference parameter estimates. The second counterfactual I examine is to reduce incentives to discriminate

against Medicaid eligible residents by raising the Medicaid reimbursement rate. The third counterfactual is

to increase capacity at facilities in a way that is targeted to benefit Medicaid eligible residents. Because the

latter two counterfactuals require computing counterfactual admission policies, I only simulate their impacts

for the San Diego area.

All counterfactual simulations presented in this section hold facility characteristics fixed, including price,

staffing, and unobserved measures of quality. While I do not allow facilities to adjust their characteristics,

I present some evidence that suggests how facilities might adjust their staffing and other quality metrics if

able in response counterfactual policies.

8.1 Counterfactual 1: First Come, First Serve

Since my model does not incorporate waitlisting, I model FCFS as a requirement that facilities with a

vacancy must offer admission to all arriving residents.74 Under this rule, residents are admitted to their

first choice facility with an available bed. I use the preference estimates from the first stage to simulate the

distribution of admissions that would occur under this rule.75

Figure 13 gives the preference rankings of residents’ admitting facilities under FCFS. The distributions of

preference ranks does not vary substantially by payment source or stayer-type because all arriving residents

receive equal treatment under FCFS. Comparing Figure 13 to Figure 12 indicates that FCFS increases the

likelihood that Medicaid eligible and very-long-stay residents are matched to preferred facilities, while the

opposite is true for non-Medicaid and short-stay residents. Figures 14 and 15 show similar distributional

72San Diego area was chosen as the subsample for its size and geographic separation from other markets (see Figure 5a).
73This is likely because admission policies in the second stage have fewer degrees of freedom and are constrained by facilities’

optimality conditions, as well as because the sample used in estimating the second stage is smaller.
74This is equivalent to a prohibition on selective admissions.
75Specifically, I simulate the arrival of 100 years of residents and allow these residents to be admitted at their most preferred

facility with available occupancy at their time of arrival. I draw observable resident characteristics from the data and simulate
each resident’s idiosyncratic preferences, length of stay, and unobserved profitability parametrically. I initialize facilities to their
mean census counts in the data and burn the first three years of simulation.
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impacts of FCFS on residents’ utilities and the staffing ratios at residents’ admitting facilities. As a best-

case benchmark, these figures also include the impact of FCFS without capacity constraints, under which

all residents are admitted to their most-preferred facility.

The findings of these simulations are intuitive: residents who experience substantial admissions discrimi-

nation under selective admissions are likely to benefit from more equitable access under FCFS, while residents

who received preferential treatment under selective admissions fare worse under FCFS because they are more

likely to be crowded out of their preferred facilities. Overall, consumer welfare increases under FCFS be-

cause capacity at high-quality facilities is more heavily utilized. On average, consumers value enforcing

FCFS equivalently to an additional 0.20 hours (1.1 standard deviations) of registered nurse care per day.76

The cost to hire this additional care at the average California RN wage and benefits ($38.81) would be $7.68

per resident-day. Intuitively, this net increase in consumer welfare under FCFS results largely from greater

utilization of beds at high-quality facilities.77

Lastly, Figure 16 shows that average admitted patient profitability is less strongly increasing in facility

quality and staffing levels under FCFS. This suggests that if facilities are able to adjust their characteristics,

high-quality facilities are likely to reduce their expenditure on staffing and quality under FCFS.

8.2 Simulating Counterfactual Beliefs

Simulating the remaining counterfactuals requires computing facilities’ equilibrium optimal admission policies

under the counterfactual. To accomplish this, I simulate 100 years of resident arrivals to San Diego and

compute counterfactual policies and beliefs jointly as a fixed point in the simulation. I initialize facility

policies to be FCFS and compute facilities’ beliefs about the distribution of residents willing to accept an

offer of admission based on these policies.78 I then iteratively update facilities’ optimal policies based on

beliefs and beliefs based on policies until I reach a fixed point.79 The simulated admissions given these fixed

point beliefs and policies represent the admissions that occur under the counterfactual.

8.3 Counterfactual 2: Raising the Medicaid Reimbursement Rate

Section 6 parameterizes average admission-discounted resident profitability, π̃ij , in terms of desirability score

zi. While zi, and therefore π̃ij , incorporates information about the share of a resident’s stay anticipated to be

reimbursed by each payer source, it does not identify the structural relationship between daily reimbursement

76Medicaid and non-Medicaid residents respectively value enforcing FCFS at 0.26 and 0.05 hours of RN care per day. Since the
demand model allows different preferences for RN staffing for Medicaid and non-Medicaid residents, I apply the corresponding
sensitivity in translating the welfare impacts to RN hours for each group.

77Note that this net effect is positive in spite of the fact that the majority of residents are short stay non-Medicaid residents,
a group that does worse under FCFS. This is because FCFS disproportionately benefits very-long-stay residents, who constitute
a majority of care days.

78I initialize each facility in the simulation at its empirical mean census and burn the first three years of simulated arrivals
in computing its beliefs.

79I consider the algorithm to have converged when facilities’ updated policies disagree with the previous policies on fewer
than 5 in 10,000 applicants (i.e., individuals willing to accept an offer of admission). Note that there is no theoretical guarantee
that this equilibrium is unique.
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rates and π̃ij . Additional assumptions are therefore required to model raising the Medicaid reimbursement

rate by raising π̃ij for residents on Medicaid. Appendix I estimates the relationship between reimbursement

rates and π̃ij by attributing to reimbursement rates the variation in π̃ij that is correlated with a resident’s

anticipated payer source after controlling for the resident’s health characteristics and stayer-type.80 My

estimates suggest approximating raising the Medicaid reimbursement rate to match the private rate by

raising π̃ij by .765wmcaidij , where wmcaidij is the admission-discounted share of a resident i’s stay at facility j

that is expected to be reimbursed by Medicaid.

Figure 17 shows the impacts of raising the Medicaid reimbursement rate halfway to the private rate, to

the private rate, and halfway again above the private rate. Raising Medicaid reimbursement rates at this

magnitude only slightly improves access and utility for Medicaid residents, and these gains occur largely at

the expense of crowding out non-Medicaid residents. Raising the Medicaid reimbursement rate to match the

private rate would cost approximately $37.26 per resident-day, and Medicaid residents value the correspond-

ing increased access equivalently to just .02 hours of RN care per day.

It is important to reiterate that these counterfactual simulations hold facility characteristics fixed. It is

also possible that facilities would respond to an increase in the Medicaid reimbursement rate by increasing

quality in order to attract Medicaid residents (Hackmann, 2018). As such, these results are best interpreted

as showing that raising the Medicaid reimbursement rates is a very expensive way to improve Medicaid

residents’ access to existing higher quality facilities. Multiple factors contribute to this inefficacy. First,

the majority of Medicaid eligible residents are already admitted to their preferred facility. Second, capacity

constraints severely limit the degree to which access can be increased. Even when Medicaid residents are

treated equitably under FCFS, capacity constraints prevent 36% of residents utilizing Medicaid from being

admitted at their preferred facility. Third, my estimates suggest that facilities find residents on Medicare

most attractive, and raising the Medicaid rate to match the private rate may not increase Medicaid residents’

desirability sufficiently to capture a significant share of beds at high-quality facilities from Medicare.

8.4 Counterfactual 3: Increasing Capacity

The last counterfactuals I simulate are to expand capacities at nursing homes with high marginal utility

excess demand from Medicaid residents.81 Figure 18 gives the simulated impacts of adding 200, 400, 600,

and 800 beds to the San Diego area’s existing stock of 7,283 beds. In contrast to raising the Medicaid

reimbursement rate, both Medicaid and non-Medicaid residents benefit from increased capacity: the welfare

gain from expanding capacity by 800 beds is valued equivalently to .13 RN hours per day by Medicaid eligible

80The relationship between health characteristics and profitability may be different when residents are on Medicare than when
they are on private pay or Medicaid. This is both because Medicare reimbursement rates are intensity adjusted and because
the rehab and therapy care typically received on Medicare is different than the long term care typically received by Medicaid
and private pay patients. In order to address this, I allow the impact of health characteristics on π̃ij to differ depending on the
share of a resident’s stay that is is reimbursed by Medicare.

81I enumerate the algorithm I use for allocating beds in Appendix J.
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residents and .06 RN hours per day by non-Medicaid residents.82 Providing this equivalent RN care at the

average hourly wage plus benefits in San Diego ($36.20) would cost $27,384 per day: $4.78 and $2.16 per

resident-day for Medicaid and non-Medicaid residents, respectively.

Cost reports suggest an approximate cost of expanding a facility by one bed of $14.43/day.83 By this

metric, adding 800 beds to San Diego facilities would cost $11,544 per day, which is approximately $2.60 per

day of Medicaid-covered SNF care in San Diego. This is both less costly than raising the Medicaid reim-

bursement rate and results in larger welfare gains for both Medicaid and non-Medicaid residents. Moreover,

the cost of expanding capacity is lower than the cost of utility-equivalent hours of RN care.

The welfare gains of increasing capacity do not derive primarily from additional RN care. In fact, hours

of RN care received by residents on Medicaid increases by just 4.9% when adding 800 beds. Instead, the

simulations suggest that gains derive largely from residents being admitted at facilities with higher unob-

served quality and for which the resident has greater idiosyncratic preference. Since higher RN staffing has

been shown to improve health outcomes (Schnelle et al., 2004; Friedrich and Hackmann, 2017), policymakers

may be particularly interested in adjusting capacity to increase the amount of RN care received by residents.

Figure 19 shows the impact of targeting capacity expansions based on RN staffing. In spite of this targeting,

the improvements are still small, which suggests that residents’ strong preferences for characteristics other

than quality may pose a significant obstacle to using increased capacity to improve the amount of RN care

received by residents.

9 Conclusion

Whether healthcare providers pick their patients has important implications for academics and policymakers

concerned with healthcare inequality. In spite of existing anti-discrimination laws, this paper finds evidence of

selective admission practices in the nursing home industry along a number of dimensions, including Medicaid

eligibility, anticipated length of stay, and care requirements. I estimate that 19% of residents in California

are unable to gain admission at their first choice facility. These residents are disproportionately very-long-

stay residents on Medicaid, and their care constitutes 40% of all resident days in the state. Counterfactual

simulations indicate that prohibiting selective admission practices benefits these disadvantaged residents by

increasing their access to quality facilities, though the gains are partially offset by the crowding out of other

residents. Simulations also suggest that raising the Medicaid reimbursement rate is a costly way to increase

access for Medicaid-eligible residents at existing high-quality facilities. Moreover, the small benefits are

largely at the expense of non-Medicaid residents. Targeted capacity increases, on the other hand, are more

82While the capacity expansions are targeted at facilities with excess demand from Medicaid-eligible residents, many of the
added beds are still allocated by facilities to non-Medicaid residents. Furthermore, vacancy chains allow more than just the
individual occupying the new vacancy to benefit. If the additional beds were reserved for Medicaid eligible residents, the impacts
are expected to favor Medicaid eligible residents more heavily.

83I compute this approximation using facilities’ per-bed lease expenditures and gross property, plant, and equipment (PP&E)
as a metric for the cost of adding an additional bed. I use an interest rate of 5% to amortize the PP&E over a 30 year
depreciation period.
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cost-effective and benefit both Medicaid and non-Medicaid residents.

There are a number of potential avenues for future related work. For example, my counterfactual simula-

tions hold fixed facility characteristics such as staffing ratios. Endogenizing facilities’ choice of characteristics

in context of their dynamic optimal control problems could provide further insights into the impacts of the

policies I study. Additionally, there is evidence that hospitals may steer patients toward particular SNFs

preferred by the hospital (Rahman et al., 2013). This suggests both that hospitals may affect residents’

preferences and that hospitals may be able to leverage relationships with SNFs to better place low-margin

patients.84 Future work may incorporate these factors into the resident-SNF matching process.

While this paper directly examines nursing homes, concerns about providers picking their patients extend

to many parts of the healthcare industry. The methods I use to model and identify selective admissions

may be extended to these contexts and even to non-healthcare markets with discrimination or unobserved

endogenous choice sets.
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A Tables and Figures

Table 1: Reimbursement Shares

Days Revenue Residents

% Medicare 17.28% 39.38% 73.80%
% Private 17.13% 16.05% 46.26%

% Medicaid 65.58% 44.56% 26.01%
Sum 100.00% 100.00% 146.07%

The residents column does not sum to 100% because
some residents used more than one payer source during
their stay.

Table 2: Payer Source Transitions

(a) Share of Residents

Admission
MC PR MA Sum

D
is

ch
. MC 31% 31%

PR 29% 14% 43%
MA 14% 1% 10% 26%
Sum 74% 16% 10% 100%

(b) Share of Days

Admission
MC PR MA Sum

D
is

ch
. MC 6% 6%

PR 13% 6% 19%
MA 48% 4% 22% 75%
Sum 67% 11 % 22% 100%

This table gives the share of residents that were admitted and discharged with each respective payer source. MC, PR, and MA
respectively denote Medicare, private, and Medicaid. The table assumes that residents may only move from Medicare to private
and from private to Medicaid. Medicare eligibility and days of Medicare coverage are imputed using resident assessment data
for residents enrolled in Medicare Advantage (29.11%).

Table 3: Data Sources

Data Source Years Relevant Data

MDS 1999-2010 Demographics, health status, entry and discharge dates
MedPAR 2004-2010 Medicare claims, hospital source, entry and discharge dates
MAX LT 2004-2007 Medicaid claims, entry and discharge dates
MMLEADS 2008-2009 Medicaid eligibility
BSF 2004-2010 Dual eligibility, zip code
OSCAR 2004-2007 Facility characteristics
LTCFocus 2004-2007 Facility characteristics
Medi-Cal Data 2004-2007 Facility cost data, private rates
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Figure 1: Capacities and Occupancy Rates
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Table 4: Resident Summary Statistics

Mean SD N

# Local Facilities 46.70 44.49 554,852
Length of Stay 143.47 332.77 554,852
Medicare 18.78 35.70 554,852
Private 24.20 122.83 554,852
Medicaid 94.48 298.39 554,852
Dual-Eligible (Start) 0.31 0.46 554,852
ADL Score 2.29 0.76 454,077
Dementia 0.25 0.43 391,390
Weight 149.75 38.97 445,842

Table 5: Facility Summary Statistics

Mean SD N

Beds 100.69 47.66 970
% Occupancy 87.05 7.95 970
% Medicaid 63.79 22.82 970
% Medicare 13.70 10.63 970
RNs Per Bed-Day 0.31 0.18 970
LPNs Per Bed-Day 0.77 0.22 970
CNAs Per Bed-Day 2.46 0.53 970
Case Mix Index 1.06 0.09 969
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Figure 2: Length of Stay Distribution
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Figure 3: Private and Medicaid Rates
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Figure 4: Distance to Admitting Facility
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Figure 5: Maps of Facilities and Residents

(a) California
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Table 6: Relationship Between Occupancy and Admitted Patient Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Length Medicaid Medicaid Dementia Antipsychotics Antianxiety Antidepressants Inappropriate Conflict Conflict
of Stay Eligible Days Days/Week Days/Week Days/Week Behavior Staff Residents

Occupancy -42.38 -0.0433 -38.34 -0.00883 -0.106 -0.0491 -0.139 -0.00685 -0.00149 -0.000561
Percentile (1.539) (0.00195) (1.380) (0.00243) (0.0118) (0.00959) (0.0155) (0.00189) (0.000577) (0.000264)

Mean 143.5 0.308 94.09 0.246 1.004 0.654 1.797 0.0760 0.0107 0.00227
Facility FEs Y Y Y Y Y Y Y Y Y Y
N 555,170 555,170 555,170 391,602 454,304 454,295 454,308 452,637 390,539 390,539
R2 0.0869 0.247 0.0871 0.0518 0.128 0.0226 0.0201 0.0631 0.0573 0.0617

Notes: Standard errors in parenthesis. Occupancy percentiles are scaled between 0 and 1.

Table 7: Relationship Between Occupancy and Arriving Patient Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Length Medicaid Medicaid Dementia Antipsychotics Antianxiety Antidepressants Inappropriate Conflict Conflict
of Stay Eligible Days Days/Week Days/Week Days/Week Behavior Staff Residents

Occupancy -3.494 -0.00376 -3.028 -0.00144 -0.0111 -0.00404 -0.00567 -0.000968 -0.0000492 -0.0000678
Percentile (0.231) (0.000323) (0.207) (0.000357) (0.00192) (0.00135) (0.00219) (0.000303) (0.0000707) (0.0000390)

Mean 152.0 0.371 101.4 0.257 1.190 0.613 1.693 0.0903 0.00748 0.00227
Facility FEs Y Y Y Y Y Y Y Y Y Y
N 25,881,609 25,881,609 25,881,609 18,145,527 20,918,487 20,918,336 20,918,487 20,827,388 18,078,972 18,078,972
R2 0.00878 0.0516 0.00859 0.00296 0.00847 0.00258 0.00332 0.00173 0.00253 0.000484

Notes: Standard errors in parenthesis. Occupancy percentiles are scaled between 0 and 1.
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Figure 6: Binscatters: Resident Characteristics on Percentile Occupancy

(a) Medicaid Utilization
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All binscatters include facility fixed effects and controls for independent variables in other panels. Short, long, and very-long
stayers respectively constitute the 1-70, 70-90, and 90-100 percentiles of predicted length of stay.
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Figure 7: Distribution of Desirability Scores by Subgroup

(a) Medicaid Eligibility
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Short, long, and very-long stayers respectively constitute the 1-70, 70-90, and 90-100 percentiles of predicted length of stay.

Table 8: Relationship Between Local Facility Occupancies

(1) (2) (3) (4) (5) (6)

occ%lej′t 0.0286 0.0187 0.0223

of closest j′ (0.00149) (0.00113) (0.00149)

X # fac. in 5km -0.000777 -0.000241 -0.000816
(0.000179) (0.0000891) (0.000179)

Mean occ%lej′t 0.152 0.0767 0.128

of closest 5 j′ (0.00316) (0.00219) (0.00317)

X # fac. in 5km -0.00829 -0.000562 -0.00896
(0.000392) (0.0000995) (0.000392)

Facility FEs Y N Y Y N Y
Date FEs N Y Y N Y Y
N 1,045,151 1,045,151 1,045,151 1,054,363 1,054,363 1,054,363
R-squared 0.00153 0.00689 0.00785 0.00267 0.00775 0.00821

Notes: Standard errors in parenthesis. The standard deviation of the mean occupancy percentile of a facility’s closest
5 competitors is .134.

42

Electronic copy available at: https://ssrn.com/abstract=3613950



Table 9: Preference Parameter Estimates

Main
No Preference
Heterogeneity

No Selective
Admission

(1) (2) (3)

Distance (km) -0.36 -0.36 -0.34
(0.0014) (0.0014) (0.0013)

Distance-squared 0.0069 0.0069 0.0064
(0.00007) (0.00007) (0.00007)

Out of Pocket ($100) -0.05 -0.0086 -0.13
(0.01) (0.01) (0.01)

RN Hours 3.45 3.30 2.98
(0.34) (0.33) (0.27)

RN Hours X Medicaid Eligible -1.05 -1.83
(0.026) (0.025)

LPN Hours 1.71 1.48 1.18
(0.25) (0.24) (0.19)

LPN Hours X Medicaid Eligible -0.76 -1.10
(0.02) (0.02)

For Profit 0.22 0.20 0.34
(0.17) (0.16) (0.13)

Facility Fixed Effects X X X
N 485,065 485,065 485,065

Notes: Mean preference terms (RN Hours, LPN Hours, and For Profit) are by regressing facility characteristics
on estimated facility fixed effects. Standard errors are in parenthesis.

Figure 8: Profitability (π̃) and Desirability (z) Scores, by Stayer-Type
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Notes: Short, long, and very-long stayers respectively constitute the 1-70, 70-90,
and 90-100 percentiles of predicted length of stay. The intercepts of π̃ are not
identified.
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Figure 9: First Stage Cutoff Rules and Offer Probabilities
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0
1

2
3

4
Cu

to
ff 

Ru
le

0 .2 .4 .6 .8 1
Percentile Occupancy

Bottom Quartile Interquartile
Top Quartile

(d) Offer Probabilities, by Community Deviation

.6
.7

.8
.9

1
O

ffe
r P

ro
ba

bi
lit

y

0 .2 .4 .6 .8 1
Percentile Occupancy

Bottom Quartile Interquartile
Top Quartile

Notes: The intercepts of the cutoff rules are not identified.
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Figure 10: First Stage Model and Data Comparison

(a) By Stayer-Type
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Figure 11: Second Stage Model and Data Comparison

(a) Admission Probability by Stayer-Type
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Figure 12: Preference Rank of Admitting Facility

(a) Percent of Residents, by LOS-Type
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Figure 13: Preference Rank of Admitting Facility under FCFS

(a) Percent of Residents, by LOS-Type
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Figure 14: Counterfactual Utility under FCFS

(a) All Residents

0
.0

5
.1

.1
5

.2
.2

5
D

en
si

ty
 (A

dm
is

si
on

s)

-10 -5 0 5
Resident Utility

Selective Admissions
FCFS, Capacity Constraints
FCFS, No Capacity Constraints

(b) All Residents, weighted by LOS
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Figure 15: Factual and Counterfactual Admitting Facility Staffing Ratios under FCFS
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Figure 16: Average Resident Profitability Under Selective Admissions and FCFS
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Figure 17: Counterfactual: Raising Medicaid Reimbursements
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Figure 18: Counterfactual: Expanding Capacity
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Figure 19: Targeting Capacity Expansion to Raise Medicaid Resident Nurse Staffing
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B Model Appendix

B.1 The Optimal Control Problem

At each time t, the facility chooses an adapted admission plan {aτ}τ≥t to maximize:

E

 ∑
{i:τAi ≥t,ci∈aτA

i
,‖N

jτA
i
‖1<bj ,uij≥uij′ ∀j′∈Oi}

exp
(
ρ(τAi − t)

)
Πij +

∫ ∞
t

exp(−ρτ)Ψj(Njτ )dτ | Fjt

 , (34)

where F jt is a filtration representing j’s information, bj is the total number of beds at the facility, and the

expectation is taken with respect to j’s beliefs.85

Assumptions 1 and 2 imply that facilities condition their admission policies only on Njt. Assumption 1

implies that facilities’ perceive the arrival of future prospective residents to be independent of the facility’s

history, and Assumption 2 and memoryless discharge processes imply that all current residents of a given

stayer-type φ are indistinguishable in their effect on j’s future payoffs. Therefore, the facility perceives no

benefit to conditioning its strategy on anything other than Njt.

The same arguments imply that the facility only considers φ and Πij when admitting a resident. Further-

more, because the facility always prefers higher Πij given φi, admission policies are thresholds Πτ ∈ R|Φ|,

where i is offered admission only if Πij ≥ Πτφi
.

Together, these imply that the facility’s admission policy is a vector of threshold rules that vary by census

counts Njt. I denote this policy by functions {Πjφ}φ, where Πjφ : {N : N ∈ Z|Φ|≥0, ‖N‖1 < bj} → R. Thus,

the facility chooses {Πjφ}φ to maximize:

E

 ∑
{i:τAi ≥t,Πij≥Πjφi

(N
jτA
i

),‖N
jτA
i
‖1<bj ,uij≥uij′ ∀j′∈Oi}

exp
(
ρ(τAi − t)

)
Πij +

∫ ∞
t

exp(−ρτ)Ψj(Njτ )dτ | Fjt

 .
(35)

B.2 Proof of Theorem 2

Without loss of generality, I exclude the facility index j. I derive the continuous time Bellman equation

and optimal policies as the limit of the analogous discrete time problem with vanishingly small discrete time

85Note that the measure with respect to which the expectation is taken must satisfy Assumption 1.
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intervals ∆t. For small ∆t, exp(−ρ∆t) ≈ 1− ρ∆t. Then, since the problem is stationary:86

V (Nt) = max
at

∆tΨ(Nt) + (1− ρ∆t)E

 ∑
{i:i∈At,ci∈at}

Πij + V (Nt+∆t)|F jt


=⇒ ρV (Nt)∆t = max

at

∆tΨ(Nt) + (1− ρ∆t)E

 ∑
{i:i∈At,ci∈at}

Πij + V (Nt+∆t)− V (Nt)|F jt

 ,

(36)

where At is the set of residents that arrive to the market at t and are willing and able to accept an offer of

admission from the facility. Applying the Poisson arrival processes and the exponential discharge rates:87

E
[
V (Nt+∆t)− V (Nt)|F jt

]
=
∑
φ

(
λAφ∆t+ o(∆t)

) ∫
1{Πij ∈ at}µ(ci)

(
Πij + V (Nt + 1φ)− V (Nt)

)
dF (ci|φi = φ)

+
∑
φ

Ntφ
(
λDφ ∆t+ o(∆t)

) (
V (Nt − 1φ)− Vj(Nt)

)
+ o(∆t),

(37)

where o(∆t) are terms such that lim∆t→0
o(∆t)

∆t = 0. Substituting (37) into (36), dividing both sides by ∆t,

and taking ∆t→ 0 yields the result:

ρV (Nt) = Ψ(Nt) +
∑
φ

λDφ Ntφ
(
V (Nt − 1φ)− V (Nt)

)
+
∑
φ

λAφ max
at

∫
1{Πij ∈ at}

(
Πij + V (Nt + 1φ)− V (Nt)

)
µ(ci)dFc (ci|j ∈ Ji, φi = φ)

= Ψ(Njt) +
∑
φ

λDφ Ntφ
(
V (Nt − 1φ)− V (Nt)

)
+
∑
φ

λAφ

∫
max

{
0,Πij + V (Nt + 1φ)− V (Nt)

}
µ(ci)dFc (ci|j ∈ Ji, φi = φ) ,

= Ψ(Njt) +
∑
φ

λDφ Ntφ
(
V (Nt − 1φ)− V (Nt)

)
+
∑
φ

λAφ

∫
max

{
0,Π + V (Nt + 1φ)− V (Nt)

}
dFΠ

jφ(Π),

(38)

FΠ
jφ(Π) :=

∫
{ci:Πij≤Π}

µj(ci)dFc (ci|j ∈ Ji, φi = φ) . (39)

It is clear from the maximand in (38) that at = {ci : Πij ≥ V (Nt)− V (Nt + 1φ)} up to a measure-zero set.

86When Nt = b, the capacity constraint can be enforced by imposing that either of At or at is empty.
87When Ntφ = 0, define Ntφ

(
λDφ ∆t+ o(∆t)

) (
V (Nt − 1φ)− Vj(Nt)

)
to be 0 since V (Nt − 1φ) is not defined.
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B.3 Relationship Between Continuous and Upfront Payoffs

Theorem 3. The admission policies given continuous flow payoffs πij(t − τAi ) and upfront payoffs Πij

satisfying (8) are identical.

Proof of Theorem 3. Without loss of generality, we drop the facility index j. First, consider the case with

flow payoffs. I index residents by their stayer-type φ, flow profit function function πi(·) and arrival time

τAi . Therefore, it is helpful to articulate the facility state It as (Iφ,π,τt )φ,π,τ , where Iφ,π,τt an indicator for if

a resident of stayer-type φ with profitability function π was admitted at τ and is still resident at time t.88

At each time t, the facility chooses an adapted admission plan {aτ}τ≥t. The facility believes that the state

It evolves according to the Poisson arrival and exponential discharge processes described in the main text,

where residents of type (φ, π, τ) are made offers of admission if and only if the facility has an available bed

and (φ, π, τ) ∈ aφ,πτ .89 The sequence control problem for the facility is:90

V (It) = sup
a

E

∫ ∞
t

e−ρ(τ−t)

 ∑
{

(φ,π,τ ′):Iφ,π,τ
′

τ >0
}π(τ − τ ′) + Ψ(Nτ )

 dτ |F jt


=

∑
{

(φ,π,τ ′):Iφ,π,τ
′

t >0,τ ′<t
}E
[∫ ∞

t

e−ρ(τ−t)Iφ,π,τ
′

τ π(τ − τ ′)dτ
]

+ sup
a

E

 ∑
{

(φ,π,τ ′):τ ′≥t,Iφ,π,τ
′

τ′ >0
}
∫ ∞
τ ′

e−ρ(τ−t)Iφ,π,τ
′

τ π(τ − τ ′)dτ |F jt

+ E
[∫ ∞

t

Ψ(Nτ )dτ |F jt
]

=
∑

{
(φ,π,τ ′):Iφ,π,τ

′
t >0,τ ′<t

} Π(φ, π, τ ′, t)

+ sup
a

E

 ∑
{

(φ,π,τ ′):τ ′≥t,Iφ,π,τ
′

τ′ >0
} e−ρ(τ

′−t)Π(φ, π)|F jt

+ E
[∫ ∞

t

Ψ(Nτ )dτ |F jt
] ,

(40)

Π(φ, π, τ ′, t) := E
[∫ ∞

t

Iφ,π,τ
′

τ e−ρ(τ−t)π(τ − τ ′)dτ |F jt
]
, (41)

Π(φ, π) := Π(φ, π, τ ′, τ ′) where Iφ,π,τ
′

τ ′ > 0. (42)

Since Π(φi, πi) = Πij from (8), the maximand above is identical to that in (9), the sequence problem when

the facility receives upfront Πij . Since the maximands are identical in both problems, the optimal admission

policies in both problems are the same.

88I do not account for simultaneous arrivals because the probability of such an event ever occurring is measure zero.
89I require that j’s beliefs satisfy Assumption 1.
90Note that Nt = (Ntφ)φ is as in the main text, so Ntφ is the number of elements in {(π, τ ′) : Iφ,π,τ

′

t > 0, τ ′ ≤ t}.
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Intuitively, Theorem 3 derives from the fact that once a resident is admitted, their πij flow payoff is not

affected by and does not affect the flow payoffs received from other current or future residents. Therefore,

the continued πij flow payoffs from current residents do not factor into admissions decisions, and hence

disregarding these continued payments in the translated game with lump-sum payoffs does not affect the

optimal admission policies.91 An important implication of Theorem 3 is that even if the facility receives flow

payoffs πij(·) that vary throughout a resident’s stay, one need only characterize Πij in (8) to characterize

optimal admission policies.

B.4 Relaxing Model Assumptions

Corollary 3.1. The size of the policy-relevant state space, i.e. Nj := {N : ‖N‖1 ≤ bj}, is
(bj+|Φ|
|Φ|

)
.

It is worth considering the impact that relaxing either Assumption 1 or 2 even slightly would have on

the size of facilities’ state space. Under Assumptions 1 and 2, a facility with 150 beds (i.e. bj = 150) has

585,276 policy-relevant states. Slightly relaxing Assumption 2 by allowing Ψ to also be a function of just a

count of the number of “high needs” patients at the facility increases the number of payoff-relevant states

to 18,161,699,556. Similarly, if the facility were to condition its beliefs about the probability that future

residents will accept offers of admission on just the current Nj′t of its closest competitor j′ (with bj′ = 150),

then the size of the facility’s state space would be 342,547,996,176.92

C Categorizing Stayer-Types

While residents’ lengths of stay are highly varied (see Figure 2), I find them to be broadly predictable using

information that was likely available at admission. I use regularized and cross-validated machine learning

methods outlined in Appendix E to predict the natural logarithm of residents’ length of stay using residents’

first available assessment and claims data. I then bin residents into three categories based on their predicted

length of stay: short stay (70%), long stay (20%), and very long stay (10%). Figure 20 shows the realized

length of stay distribution for residents in each category.

91Note that while the optimal policies are shared between these games, it is not true that the value functions are shared. In
particular, they differ by the expected remaining flow payoffs from the current census of residents.

92A possible alternative would be to allow facilities to condition on coarse information about competitors’ censuses in an
experience based equilibrium (Fershtman and Pakes, 2012).
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Figure 20: Length of Stay Distribution by Predicted Stayer-Type
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Short, long, and very-long stayers respectively constitute the 1-70, 70-90, and 90-
100 percentiles of predicted length of stay.

D Preliminary Evidence Appendix

D.1 Proofs

Proof of Theorem 1. Towards induction, assume that V (N − 1)− V (N) ≤ V (N)− V (N + 1). Compare (3)

evaluated at N and N + 1. Note that ρV (N) ≥ ρV (N + 1), and by the inductive hypothesis:93

NλD (V (N − 1)− V (N)) ≤ (N + 1)λD (V (N)− V (N + 1)) . (43)

Therefore, it must be that:

λA
∫ ∞
V (N)−V (N+1)

(Π + V (N + 1)− V (N)) dF (Π) ≥ λA
∫ ∞
V (N+1)−V (N+2)

(Π + V (N + 2)− V (N + 1)) dF (Π),

(44)

which holds only if V (N + 1) − V (N + 2) ≥ V (N) − V (N + 1), proving the inductive step. The base case

holds by the same argument where V (0)− V (1) > 0 is used in lieu of the inductive hypothesis.

D.2 Robustness

Table 7 gives analogous regressions to Table 6 but also includes resident-facility pairs where the resident

arrived locally to the facility but was admitted to a different facility. While these estimates do indicate

that a facility’s occupancy is correlated with characteristics of arriving residents, the estimated coefficients

93That V is decreasing follows from the fact that any admission plan by a facility in N + 1 can be mimicked by a facility in
N to yield at least the same value.
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are very small, especially when compared to the coefficient estimates in Table 6. This suggests that the

covariance between facility occupancy and admitted patient characteristics that we identify in Table 6 is not

driven by variation in the distribution of arriving patient characteristics.

Table 8 gives estimates from regressing a facility’s occupancy percentile on the occupancy percentiles of

its local competitors. I estimate only a small positive relationship that is strongest in highly concentrated

markets. For example, the occupancy percentile of a facility with the average number of competitors within

5km is only expected to increase by 1.72 between its geographically closest competitor’s least full day and

most full day in the sample. Similarly, a one standard deviation increase in the average occupancy percentile

of a facility’s closest 5 competitors corresponds to a .97 percentile increase in the facility’s occupancy per-

centile. Insofar as variation in competitors’ occupancies reflects variation in competitors’ admission policies,

the small magnitudes of the coefficients in Table 8 suggest that the covariance between facility occupancy

and admitted patient characteristics is unlikely to driven by simultaneous variation in competitors’ policies.

D.3 Projecting Desirability Scores Onto a Linear Model

Table 10 gives the estimates of a regression of resident characteristics on desirability scores. These coefficient

estimates must be interpreted cautiously because they are not causal and because they are a linear approx-

imation to a highly nonlinear function. Still, Table 10 provides valuable insight into the correlations being

exploited by the machine learning algorithm. The estimates agree with Figure 7 that Medicaid residents and

residents with longer anticipated stays are less desirable, and they further suggest that Medicare coverage is

more desirable than private pay. The positive coefficient on Case Mix Index (CMI) are explained by the fact

that Medicare reimbursements are determined using CMI. I estimate a negative coefficient on DRG weights

likely because the additional care requirements associated with higher DRG weights are not compensated by

Medicare except through correlation with CMI. Additionally, consistent with Table 6, I find small negative

coefficients on health characteristics associated with uncompensated care requirements. Finally, I find that

even controlling for the aforementioned, black and Hispanic residents have lower expected desirability scores.
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Table 10: Regression on Desirability (z) Scores

Share of Stay: Medicare 43.71
(0.0488)

Private Pay 43.03
(0.0488)

Medicaid 41.36
(0.0498)

Stayer Type: Long Stayer -0.455
(0.00772)

Short Stayer -3.034
(0.0147)

Native American 2.331
(0.0573)

Race: Asian 2.415
(0.0486)

Black 1.892
(0.0485)

Hispanic 2.167
(0.0482)

White 2.426
(0.0477)

Resource Utilization: Case Mix Index 0.0124
(0.000480)

DRG Weight -0.531
(0.0135)

Health: Visual Impairment (0-4) -0.118
(0.00313)

Diabetes -0.0560
(0.00611)

Chewing Problems -0.0307
(0.00692)

Varied Mental Function -0.0993
(0.00765)

Antipsychotics (days/week) -0.0730
(0.00139)

Antienxiety (days/week) -0.0853
(0.00160)

Antidepressants (days/week) -0.0456
(0.000985)

Socially Inappropriate Behavior (0-3) -0.164
(0.00899)

Conflict with Staff -0.176
(0.0310)

Conflict with Residents -0.508
(0.0827)

Body Mass Index -0.00841
(0.000492)

Underweight -0.0777
(0.00935)

N 555,170
R2 0.567

Notes: Standard errors in parenthesis. Regression includes addition controls
for whether each characteristic is observed for each resident. Shares of stay
are the expected present-discounted share of a resident’s stay reimbursed by a
given source. See Appendix I.
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E Machine Learning

The primary machine learning tool I use in this paper is Microsoft’s open source gradient boosted decision

tree (GBDT) implementation, LightGBM (Ke et al., 2017). Gradient boosting is a procedure to train a

predictive function that is an ensemble of weak learners (Friedman, 2001, 2002). As its name suggests, these

weak learners are decision trees in the case of GBDT.

By composing many simple functions (decision trees), the predictive function can approximate highly

non-linear patterns in the data. However, without restriction on either the trees’ or ensemble’s complexity,

this flexibility will result in over-fitting. To prevent this, I regularize the number of leaves in each tree, the

number of trees in the ensemble, and the relative weight that the predictive function places on successive

trees (i.e., the “learning rate”). Tuning these parameters is analogous to tuning the penalty parameter in

a LASSO or Ridge regression. Parameter values are selected to minimize the model’s k-fold cross-validated

out of sample loss. When the number of features are too large for parameter tuning to be computationally

feasible with the full feature set, the features input to the tuning process are selected by excluding those

with very low influence on a model trained with fixed parameter values.

F Preferred Parameterizations

I parameterize π̃ij to be only a function of univariate desirability score zi, stayer-type φi, and profitability

shock επi that is observed by facilities but unobserved to the econometrician:

π̃ij = π̃(zi, φi; γπ)− επi , (45)

where π̃(zi, φi; γπ) is a second degree polynomial in zi and z%le
i with intercepts in φi.

I parameterize cutoff rules as functions of facility characteristics and current census counts:

π̃jφ(Njt) = π̃(Njt, Xj , φ; γπ), (46)

Specifically, I parameterize π̃(Njt, Xj , φ; γπ) to include intercepts in φ and a polynomial in:

• E [zi|Njt, aij ]: the expected zi of residents admitted to facility j given census counts Njt. I use gradient

boosted decision trees (GBDT) described in Appendix E to fit E [zi|Njt, aij ].94 The use of GBDT allows

me to fit E [zi|Njt, aij ] with a highly flexible non-linear function that varies both across facilities as

well as over Njt within the same facility.

• x∆z
j : the difference between the average zi of j’s residents and the average zi of j’s local community.95 I

define the average zi of j’s local community using a weighted average of the zi of all patients in the data

94I additionally impose monotonicity in Njt since I expect facilities to become more selective in zi as they become more full.
95I weight these averages by residents’ lengths of stay.
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with prior residences near j, including patients admitted to a facility other than j. Because patients

are more likely to be admitted at facilities near their prior residence, I use a weight that decreases in a

patient’s distance of prior residence from the facility. Specifically, I weight local residents’ zi by their

predicted admission probability at the facility from a logit regression of admission on a second degree

polynomial in the distance between prior residence and the facility. Intuitively this weights residents

according to their likelihood of admission at the facility when only conditioning on distance.

I expect both across-facility and within-facility variation in E [zi|Njt, aij ] to be informative about facilities’

admission policies. Across-facility variation is likely to be informative because high average zi scores may

indicate that a facility is highly selective.96 Within-facility variation is likely to be informative since increasing

thresholds suggest an increasingly censored distribution of zi admitted at the facility. Similarly, large values

of x∆z
j may also correspond to facilities censoring the distribution of zi that they admit.

It is important to emphasize that π̃(Njt, Xj , φ; γπ) is not structural. The objective in parameterizing

π̃(Njt, Xj , φ; γπ) is to capture the variation in facilities’ policies in a parsimonious way.97 While this allows

use of predictive but non-structural terms such as x∆z
j and E [zi|Njt, aij ] when parameterizing the policy

functions, it also places a severe restriction on the counterfactuals that can be simulated using those policy

functions. In particular, γπ cannot be used to simulate how facilities adjust their admission policies in

counterfactuals.

G Simulating the Applicant Distribution

Observe that:

FΠ
jφ(Π) =

∫
{ci:Πij<Π}

µj(ci)dF (ci|j ∈ Ji, φi = φ)

=

∫
{Xi,επi ,ε

u
i :π̃(zi,φi)−επi <(ρ+λjφi )Π}

1 {uij ≥ uij′∀j′ ∈ Oi} dP (Xi, ε
π
i , ε

u
i |j ∈ Ji, φi = φ)

=

∫
{Xi,επi :π̃(zi,φi)−επi <(ρ+λjφi )Π}

s
Oi∪{j}
ij dP (Xi, ε

π
i |j ∈ Ji, φi = φ)

=

∫ ∫
{επi :π̃(zi,φi)−επi <(ρ+λjφi )Π}

s
Oi∪{j}
ij dFεπ (επi )dP (Xi|j ∈ Ji, φi = φ)

=

∫ ∑
k

s
[k]∪{j}
ij P (π̃(zi, φi)− επi < (ρ+ λjφi)Π|Xi,Oi = [k])P (Oi = [k]|Xi) dP (Xi|j ∈ Ji, φi = φ) ,

(47)

96It may also indicate that the facility’s local community of residents has generally high zi scores. This is also likely to
correspond to a high degree of selectivity since the facility likely anticipates an abundance of high-margin patients willing to
accept an offer of admission.

97Since facility policies are not observed, a more precise statement is that we would like to parameterize π̃ so that π̃ − π̃ is
highly informative about the covariation between facility occupancy and admitted resident composition.
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where facilities are are numbered in increasing order of π̃k(Nkt), as in (23). This suggests a number of

simulators for FΠ
jφ, the most direct of which is:

F̂Π
jφ (Π) =

∑
{i:j∈Ji,φi=φ}

∑
k ŝ

[k]∪{j}
ij P

(
π̃(zi, φi; γ̂π)− επi < (ρ+ λjφi)Π|θ̂1,Xi,Oi = [k]

)
P
(
Oi = [k]|θ̂1,Xi

)
|{i : j ∈ Ji, φi = φ}|

,

(48)

where P (Oi = [k]|θ̂1,Xi) is from equation (26), and ŝ
[k]∪{j}
ij is computed according to (17).98 The remaining

term, P
(
π̃(zi, φi; γ̂π)− επi < (ρ+ λjφi)Π|θ̂1,Xi,Oi = [k]

)
, can be computed analytically using Fεπ .

H Computing Expected Out-of-Pocket Expenditure

In this section I describe my model of resident beliefs about their expected admission-discounted daily out-of-

pocket expenditure, E[OoPij ]. I model residents as transitioning from Medicare to private pay to Medicaid

based on the resident’s Medicare eligibility and wealth. First, I assume a cap of 100 days on Medicare

coverage (L̄mcarei = 100) if i’s stay qualifies for Medicare coverage and 0 days (L̄mcarei = 0) if i’s stay does

not. Second, I infer i’s wealth from the number of days i was private pay at her admitting facility until she

transitioned to Medicaid—i.e. Wi = P privj Lprivij , where j was i’s admitting facility. In cases where i was

never observed to transition to Medicaid, I assume that i did not expect to ever transition to Medicaid at

any facility (Wi =∞). Inferred wealth is then used to forecast the number of days that i could have afforded

as a private payer at other j′ ∈ Ji (i.e., L̄privij′ = Wi

Ppriv
j′

).

Since Medicare out-of-pocket rates do not vary with facilities, I only model the out-of-pocket expenditures

during private pay.99 Then the resident’s expected out-of-pocket contribution can be computed analytically:

E [OoPij ] = P privj

(
ρ+ λDjφi

)(∫ L
mcare
i +L

priv
ij

L
mcare
i

∫ Lij

L
mcare
i

exp(−ρl)dldF (Lij)

+

∫ ∞
L
mcare
i +L

priv
ij

∫ L
mcare
i +L

priv
ij

L
mcare
i

exp(−ρl)dldF (Lij)

)
=
(

exp
(
−(λDjφi + ρ)L

mcare

i

)
− exp

(
−(λDjφi + ρ)(L

mcare

i + L
priv

i )
))

P privj ,

(49)

where Lij signifies resident i’s length of stay at j, and the coefficient on P privj is the admission-discounted

share of a resident’s stay that is anticipated to be private pay.

An important feature of this procedure to compute E[OoPij ] is that it takes into account the fact that

many residents who end up on Medicaid would likely have exhausted their private resources at any facility

98I use first stage (θ̂1) preference estimates in computing ŝ
[k]∪{j}
ij .

99Note that this is assumption excludes the possibility that residents adjust their beliefs about out-of-pocket expenditures
made while on Medicare based on across-facility variation in discharge rates. This assumption primarily affects short-stay
residents likely to discharge between the start of Medicare coinsurance (20 days) and the end of Medicare coverage (100 days).
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and should therefore have been largely indifferent to variation in facility prices.100

I Changing Reimbursement Rates

Because π̃ij is a discounted average anticipated flow profit over a resident’s stay, it does not distinguish

the precise flow profit generated on different days under different reimbursements. In order to translate

raising the Medicaid reimbursement rate into a change in π̃ij , I assume the following functional form for

resident-specific flow profitability:

πij(t− τAi ) =


πmcareij if t− τAi ≤ L

mcare

i

πprivij if L
mcare

i < t− τAi ≤ L
mcare

i + L
priv

ij

πmcaidij if t− τAi > L
mcare

i + L
priv

ij .

(50)

Under this assumption, the average present discounted value of resident-specific profit that j expects to

receive from admitting i can be computed as:

π̃ij = wmcareij πmcareij + wprivij πprivij + wmcaidij πmcaidij , (51)

wmcareij = 1− exp
(
−(λDjφi + ρ)L

mcare

i

)
, (52)

wprivij = exp
(
−(λDjφi + ρ)L

mcare

i

)
− exp

(
−(λDjφi + ρ)(L

mcare

i + L
priv

i )
)
, (53)

wmcaidij = exp
(
−(λDjφi + ρ)(L

mcare

i + L
priv

i )
)
. (54)

The coefficients {wmcareij , wprivij , wmcaidij } sum to 1 and represent the present discounted share of time that the

resident is expected to spend as each payer type. The derivation of these coefficients is shown in Appendix

I.1. I additionally place the following functional form restrictions on the flow profitabilities:

πmcareij := πmcare(hi) + εij (55)

πprivij := P̄ priv −mc(hi) + εij , (56)

πmcaidij := P̄mcaid −mc(hi) + εij . (57)

This functional form allows that Medicare mark-ups may vary flexibly with the health characteristics of i.

It also allows that the residents’ marginal costs may vary with health characteristics when on private pay

or Medicaid. These marginal costs may differ from the marginal costs while the resident is on Medicare

since the type of care that qualifies for Medicare coverage is likely to differ from the typical care required

100While such residents are largely indifferent to private rates, they are not entirely so. For example, there is nonzero probability
that a resident could be discharged after a time that would have resulted in exhaustion of private wealth at an expensive facility
but not at a less expensive facility.
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when on private pay or Medicaid.101 The parameterization of π̃ij in my estimation procedure implies that

π̃ij is common to all facilities j ∈ Ji under current reimbursements. In the same vein, I impose the average

state-wide private rate and Medicaid reimbursement rates on all facilities in the parameterizations of πprivij

and πmcaidij .102

This parameterization suggests regressing estimated individual specific profitabilities π̃(zi, φi; γ̂π) on

{wmcareij , wprivij , wmcaidij }, health controls, and health controls interacted with wmcareij .103 Since marginal cost

is assumed to be the same whether a patient is on Medicaid or private pay, the difference in the coefficients on

wprivij and wmcaidij identifies the relationship between π̃ij and P̄ priv−P̄mcaid. Table 11 gives the results of such

regressions. Column (3) is the preferred specification that allows marginal costs to differentially vary with

health characteristics depending on whether the patient is currently receiving care reimbursed by Medicare.

The estimates suggest that after controlling for health characteristics, the difference in desirability between

patients on private pay and Medicaid corresponds to a .765 difference in π̃ij . Attributing this disparity

entirely to the difference in reimbursement rates suggests modeling raising the Medicaid reimbursement rate

to match the private rate by increasing π̃ij by .765wmcaidij .

Table 11: Payer Source Regression

(1) (2) (3)
Model 1 Model 2 Model 3

Medicare Weight 5.506 4.992 4.989
(0.00170) (0.0209) (0.0388)

Private Weight 4.780 4.340 4.220
(0.00275) (0.0210) (0.0245)

Medicaid Weight 3.923 3.532 3.455
(0.00415) (0.0210) (0.0244)

Stayer-Type Controls Y Y Y
Health Controls N Y Y
Health Controls X Rehab Weight N N Y
R2 0.525 0.544 0.549
N 555,170 555,170 555,170

Notes: Standard errors in parenthesis.

101The marginal cost when the resident is on Medicare is in πmcare(hi).
102Note that I must allow the error term εij to vary across j in order to match the modeling assumption in my estimation

procedure that π̃ij is common across all j ∈ Ji.
103I include only realized admissions in these regressions.
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I.1 Derivation of Payer Source Coefficients

Observe that:

Πij =

∫ ∞
0

∫ Li

0

exp (−ρl)πij(t)dldF (Li)

=
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mcare
i

0
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0
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+
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i +L
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(58)

The result follows from integrating where F is an exponential distribution with rate parameter λDjφi .

J Algorithm for Allocating Additional Beds

Determining the true optimal allocation of additional beds to benefit Medicaid residents is a complex problem

that requires forecasting dynamic equilibrium changes in facility policies and realized resident admissions.

Therefore, I implement a simple algorithm that a policymaker might plausibly use to target capacity ex-

pansions. Before enumerating the algorithm, it is helpful to define Rj to be the set of simulated residents

for whom j was their first choice but did not receive an offer of admission from j. The algorithm aims to

allocate additional beds to facilities where Rj includes a large share of Medicaid-enrollees that would gain

substantial additional utility from being admitted at j.

The specific algorithm I implement to allocate a fixed number of additional beds is:

1. For each facility, compute: ∑
i∈Rj (uij − uij′)w

mcaid
ij Lij∑

i∈Rj Lij
, (59)

where j′ is the facility that i was admitted to. This metric is intended to approximate the Medicaid-
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enrollee welfare increase that would occur if an extra bed were allocated to an arbitrary rejected

resident for whom j was their first choice.

2. Iterate cyclically over facilities in decreasing order of (59) and allocate up to half of the beds required

to satisfy the Medicaid-weighted bed-days in Rj :
104

1

2T

∑
i∈Rj

wmcaidij Lij , (60)

where T is the length of the simulation. Repeat until all additional beds are allocated.

In my counterfactuals, I allocate 200, 400, 600, and 800 additional beds by iteratively applying the algorithm

above in batches of 200 beds. In addition to the algorithm above, I have also implemented other allocation

algorithms, such as allocating in proportion to the probability that facilities are full under FCFS, and the

counterfactual results are qualitatively similar.

104I also prohibit expanding facilities above twice their original capacity.
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