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Basic Design of Differential Privacy Mechanisms

What we learned

Definition (Differential Privacy [DMNS06])

Given a privacy loss budget ε > 0, an randomized algorithm M satisfies
ε-differential privacy if for all E ⊂ range(M) and all pairs of databases
D1,D2 that are neighbors of each other,

P(M(D1) ∈ E ) ≤ eεP(M(D2) ∈ E )

Mechanisms: algorithms for Differential Privacy.
Protects confidentiality of our responses.

But how do we design mechanisms M?
The conditions have to hold for:

All pairs of databases that are neighbors of each other.
All sets E.
Nearly infinitely many equations to check!
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Basic Design of Differential Privacy Mechanisms

Differential Privacy and Modularity

Complex Mechanisms built from simpler ones

Basic tools:
Sensitivity & Laplace Mechanism.
Postprocessing.
Composition.
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Basic Design of Differential Privacy Mechanisms

Sensitivity

Neighbors in Differential Privacy: D1 ∼ D2
Bounded neighbors:

differ on value of one record.
Person 

D1 D2

{}

use this to ensure response is protected.
Unbounded neighbors:

differ on presence/absence of one record.
Person

D1 D2

{}

use this to protect participation and response.

Differential privacy: hide differences between neighbors.

How to compute f (D) =
[

average age of voters
average age of non-voters

]
with privacy?

Inject enough noise to hide any person’s response.
For any D1 ∼ D2, noise should mask difference between f (D1) and
f (D2).
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Basic Design of Differential Privacy Mechanisms

Sensitivity

If we want to add noise, sensitivity tells us how much.
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For Laplace noise:
L1 Sensitivity ∆f : largest possible impact of one person on f.

∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Add Laplace noise with scale ∆f /ε (std=
√
2∆f /ε)
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Basic Design of Differential Privacy Mechanisms

Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Person

D1 D2

{}

f (D) = sum of ages of people in D
Assume ages are apriori capped at 115
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Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Person

D1 D2

{}

f (D) = sum of ages of people in D
Assume ages are apriori capped at 115
Adding or removing 1 person to any database can change sum by at
most ±115
∆f = 115
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Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Person

D1 D2

{}

f (D) = number of people 18 years or older.
Adding or removing 1 person can change count by at most ±1
∆f = 1
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Basic Design of Differential Privacy Mechanisms

Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Person

D1 D2

{}

f (D) = [number in GQ, number of Asians].
Largest change caused by adding/removing 1 Asian individual in a GQ.
∆f = 2
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Basic Design of Differential Privacy Mechanisms

Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Person

D1 D2

{}

f (D) = [# of 1-year-olds, # of 2-year-olds, . . . , # of 100-year-olds]
Any record addition/removal changes exactly one component by ±1.
∆f = 1.
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Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
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Basic Design of Differential Privacy Mechanisms

Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Person

D1 D2

{}

f (D) =
[

# average age of voters
# average age of non-voters

]

Assume ages are apriori capped at 115
Assume avg(∅) = 0
Consider D1 = ∅, D2 = {115}.

f (D1) = [0, 0]
f (D2) = [0, 115]
∆f = 115
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Basic Design of Differential Privacy Mechanisms

Sensitivity

If we want to add noise, sensitivity tells us how much.
For Laplace noise:

L1 Sensitivity ∆f : largest possible impact of one person on f.
∆f = supD1∼D2 ||f (D1)− f (D2)||1.
Supremum over all pairs of neighbors.

Laplace mechanism M(D): add independent Laplace(∆f /ε) noise to
each component of f .

f (D) = [# of 1-year-olds,# of 2-year-olds, . . . ,# of 100-year-olds]

M(D) =




# of 1-year-olds +Laplace(∆f /ε)
# of 2-year-olds +Laplace(∆f /ε)
# of 3-year-olds +Laplace(∆f /ε)

...
...

# of 100-year-olds +Laplace(∆f /ε)




DP Stats 6 / 48



Basic Design of Differential Privacy Mechanisms

Differential Privacy and Modularity

Complex Mechanisms built from simpler ones

Basic tools:
Sensitivity & Laplace Mechanism.
Postprocessing.
Composition.
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Basic Design of Differential Privacy Mechanisms

Postprocessing

Suppose M satisfies ε-differential privacy.

e.g., M(D) =




# of 1-year-olds +Laplace(∆f /ε)
# of 2-year-olds +Laplace(∆f /ε)

...
...

# of 100-year-olds +Laplace(∆f /ε)




Let g be code that performs chi-squared test.
g ◦M: run M(D) then run g on the result.
Then g ◦M satisfies ε-differential privacy (same ε parameter)

Let h be code that links to external data.
Then h ◦M satisfies ε-differential privacy.

Let φ be any function that does not look directly at the collected data
D.

Then φ ◦M satisfies ε-differential privacy.
Differential privacy is closed under post-processing.
Very few other disclosure avoidance techniques have this property.
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Basic Design of Differential Privacy Mechanisms

Differential Privacy and Modularity

Complex Mechanisms built from simpler ones

Basic tools:
Sensitivity & Laplace Mechanism.
Postprocessing.
Composition.
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Basic Design of Differential Privacy Mechanisms

Composition

Week 1: we conduct Senate Poll using ε1-differential privacy.
Release number of “yes” responses + Laplace(1/ε1) noise.

Week 2: we release:
Number of “yes” responses from Democrats + Laplace(1/ε2) noise.
Number of “yes” responses from Republicans + Laplace(1/ε2) noise.
Sensitivity is 1, so week 2 release satisfies ε2-differential privacy.

Surely there is some combined privacy leakage?

This is called composition.
By itself, Week 1 satisfies ε1-differential privacy (privacy loss = ε1).
By itself, Week 2 satisfies ε2-differential privacy (privacy loss = ε2).
The combined release (Week 1 and Week 2) satisfies
(ε1 + ε2)-differential privacy (privacy loss = ε1 + ε2).
Hence ε is the privacy loss budget.

In general:
If M1,M2, . . . ,Mk satisfies differential privacy with parameters
ε1, . . . , εk , respectively
Mechanism M: M(D) releases M1(D),M2(D), . . . ,Mk(D) satisfies
(
∑k

i=1 εi )-differential privacy.
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

f (D) =
[

# average age of voters
# average age of non-voters

]

Assume ages are apriori capped at 115
Assume avg(∅) = 0
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

f (D) =
[

# average age of voters
# average age of non-voters

]

Assume ages are apriori capped at 115
Assume avg(∅) = 0

Attempt #1: Laplace Mechanism
Sensitivity ∆f = 115
So output M(D) =

[
# average age of voters+Laplace(115/ε)

# average age of non-voters+Laplace(115/ε)

]
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

f (D) =
[

# average age of voters
# average age of non-voters

]

Assume ages are apriori capped at 115
Assume avg(∅) = 0

Attempt #1: Laplace Mechanism
Sensitivity ∆f = 115
So output M(D) =

[
# average age of voters+Laplace(115/ε)

# average age of non-voters+Laplace(115/ε)

]

std≈ 163/ε.
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

f (D) =
[

# average age of voters
# average age of non-voters

]

Assume ages are apriori capped at 115
Assume avg(∅) = 0

Attempt #2:
1 Use half privacy budget for f1(D) =

[
sum ages of voters

sum ages of non-voters

]

2 Use half privacy budget for f2(D) =
[

# of voters
# of non-voters

]

3 Then divide.
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Assume avg(∅) = 0

Attempt #2:
1 Use half privacy budget for f1(D) =

[
sum ages of voters

sum ages of non-voters

]

ε1 = ε/2
Sensitivity ∆f1 = 115
M1(D) =

[
sum ages of voters+Laplace(115/ε1)

sum ages of non-voters+Laplace(115/ε1)

]
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]
2 Use half privacy budget for f2(D) =

[
# of voters

# of non-voters

]

ε2 = ε/2
Sensitivity ∆f2 = 1
M2(D) =
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Basic Design of Differential Privacy Mechanisms

Example 1: Average

f (D) =
[

# average age of voters
# average age of non-voters

]

Assume ages are apriori capped at 115
Assume avg(∅) = 0

Attempt #2:
1 Use half privacy budget for f1(D) =

[
sum ages of voters

sum ages of non-voters

]

ε1 = ε/2
Sensitivity ∆f1 = 115
M1(D) =

[
sum ages of voters+Laplace(115/ε1)

sum ages of non-voters+Laplace(115/ε1)

]
2 Use half privacy budget for f2(D) =

[
# of voters

# of non-voters

]

ε2 = ε/2
Sensitivity ∆f2 = 1
M2(D) =

[
# of voters+Laplace(1/ε2)

# of non-voters+Laplace(1/ε2)

]
3 Then divide.

noisy sum of ages of voters
noisy count of voters , std≈ 325

# of voters
noisy sum of ages of non-voters

noisy count of non-voters , std≈ 325
# of non-voters
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Basic Design of Differential Privacy Mechanisms

Example 1 Recap

Noisy sum
of ages

ε -DP1

Noisy counts

ε -DP2{(ε +ε )-DP1 2

Composition

÷
Postprocessing

Public
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Basic Design of Differential Privacy Mechanisms

Example 1 Recap

Noisy sum
of ages

ε -DP1

Noisy counts

ε -DP2{(ε +ε )-DP1 2

Composition

÷
Postprocessing

Public

Public

Public

Noisy measurements:
Noisy sum of ages (unbiased)
Noisy counts (unbiased)
Safe to release as well.
Should release them.
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Basic Design of Differential Privacy Mechanisms

What We Learned

Spend your privacy loss budget wisely!
It is easy to waste.
Another reason it is called a “budget”

Carefully choose:
What to inject noise into.
How to inject the noise.

Additional improvements possible:
e.g., Compute quantiles instead [Smi11].
e.g., Compute histograms support age ranges instead [QYL13].
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Basic Design of Differential Privacy Mechanisms

Example 2: Linear Regression

Linear regression model.
Data: {(~x1, y1), (~x2, y2), . . . , (~xn, yn)}
Each ||~xi ||1 ≤ C1.
Each |yi | ≤ C2.
Model: ~y = X~β + ξ




ŷ1
ŷ2
...
ŷn


 =




x1,1 x1,2 . . . x1,k
x2,1 x2,2 . . . x2,k
...

...
...

...
xn,1 xn,2 . . . xn,k







β1
β2
...
βk




Classical solution: β̂ = (XTX)−1XT~y

A differentally private approach:
1 Set ε1 = ε2 = ε/2.
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4 Model coefficients: multiply noisy (XTX)−1 and noisy XT~y .
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Sensitivity of XTX is C 2
1 .
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1 .

Add independent Laplace(C 2
1 /ε1) noise to each element of XTX.

Compute inverse.
3 Compute noisy XT~y using ε2 budget.

Sensitivity of XT~y is C1C2

Add independent Laplace(C1C2/ε2) noise to each element of XT~y .
4 Model coefficients: multiply noisy (XTX)−1 and noisy XT~y .
5 Also release the noisy measurements

noisy (XTX)
noisy XT~y
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The Role of Strategy

Flexibility

Differential privacy can be used to:
Obtain noisy sub-population totals.
Build generalized linear models [CMS11] with confidence intervals
[WKL19].
Train deep learning models [ACG+16].
Create synthetic data [LHR+10, HLM12].

Common properties: clever noise strategies.
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The Role of Strategy

Strategy Example

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
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The Role of Strategy

Strategy Example

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
Attempt 1: add noise to X and Y
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The Role of Strategy

Strategy Example

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
Attempt 1: add noise to X and Y

Sensitivity:
For any database, adding/removing one person can
Change X by ±1.
Change Y by ±1.
Total change at most 2
Sensitivity ∆: 2

DP Stats 17 / 48



The Role of Strategy

Strategy Example

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
Attempt 1: add noise to X and Y

Sensitivity:
For any database, adding/removing one person can
Change X by ±1.
Change Y by ±1.
Total change at most 2
Sensitivity ∆: 2

Noisy Counts (Measure):
X̃ = X + Laplace(2/ε)
Ỹ = Y + Laplace(2/ε)
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The Role of Strategy

Strategy Example

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
Attempt 1: add noise to X and Y
Sensitivity:

For any database, adding/removing one person can
Change X by ±1.
Change Y by ±1.
Total change at most 2
Sensitivity ∆: 2

Noisy Counts (Measure):
X̃ = X + Laplace(2/ε)
Ỹ = Y + Laplace(2/ε)

Accuracy:
Var(X̃ ) = 8/ε2

Var(Ỹ ) = 8/ε2
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The Role of Strategy

Strategy Example

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
Attempt 2:

Add noise to S = X + Y (Hispanic + VotingAge)
Add noise to D = X − Y (Hispanic - VotingAge)
Note: not very intuitive quantities.
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Strategy Example

In a given region, suppose we are interested in:
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Sensitivity? In any database, adding/removing individual who is:
Neither Hispanic nor VotingAge: S and D unchanged.
Hispanic but not VotingAge: S changes by ±1, D changes by ±1
Not Hispanic, is VotingAge: S changes by ±1, D changes by ±1
Both Hispanic and VotingAge: S changes by ±2, D is unchanged.
Maximum change: 2
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Y = # of VotingAge individuals

What do we add noise to?
Attempt 2:

Add noise to S = X + Y (Hispanic + VotingAge)
Add noise to D = X − Y (Hispanic - VotingAge)
Note: not very intuitive quantities.

Sensitivity? Equals 2
Noisy Measurements:

S̃ = S + Laplace(2/ε)
D̃ = D + Laplace(2/ε)
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Strategy Example

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
Attempt 2:

Add noise to S = X + Y (Hispanic + VotingAge)
Add noise to D = X − Y (Hispanic - VotingAge)
Note: not very intuitive quantities.

Sensitivity? Equals 2
Noisy Measurements:

S̃ = S + Laplace(2/ε)
D̃ = D + Laplace(2/ε)

Reconstruction (postprocessing):
X̃ = (S̃ + D̃)/2
Ỹ = (S̃ − D̃)/2

Accuracy:
Var(S̃) = 8/ε2

Var(D̃) = 8/ε2

Var(X̃ ) = 4/ε2

Var(Ỹ ) = 4/ε2
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The Role of Strategy

Summary

In a given region, suppose we are interested in:
X = # of Hispanic individuals
Y = # of VotingAge individuals

What do we add noise to?
Attempt 1:

Add noise to X
Add noise to Y
Variance: 8/ε2

Attempt 2:
Add noise to X + Y
Add noise to X − Y
Reconsruct
Variance: 4/ε2

Select-Measure-Reconstruct Paradigm [LHR+10].
What you want is not always what you should add noise to.
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Chi-Squared Testing

Differential Privacy and Gaussian Noise

There are versions of differential privacy compatible with Gaussian
noise.

Approximate differential privacy [DKM+06]
zCDP [BS16]
Renyi Differential Privacy [Mir17]

Privacy semantics are harder to understand.
Noise (Gaussian) is easier to understand.

Noise scale depends on L2 sensitivity ∆
(2)
f .

∆
(2)
f = supD1∼D2

||f (D1)− f (D2)||2
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Chi-Squared Testing

Classical Chi-Squared Test

Chi-Squared Tests
Goodness of fit.
Test of sample proportions.
Test of independence.

Test statistic: T =
∑k

i=1
(Xi−Ei )

2

Ei

Xi : number of people of type i
X1 X2 · · · Xk−1 Xk

Ei : expected number of people of type i under null hypothesis.
Asymptotically:

T has χ2
τ distribution.

τ is degrees of freedom (depends on how Ei is estimated)
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Chi-Squared Testing

Chi-Squared Tails
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)
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Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 1: pretend X̃i are the real data. T =
∑k

i=1
(X̃i−Ẽi )

2

Ẽi

Run standard chi-squared test on X̃1, . . . , X̃k

Reject if p-value below α.
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Chi-Squared Testing

QQ Plot for Attempt 1

Red: sampling distribution under null hypothesis.
Blue: ideal behavior for valid p-values.
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 1: pretend X̃i are the real data. T =
∑k

i=1
(X̃i−Ẽi )

2

Ẽi

Run standard chi-squared test on X̃1, . . . , X̃k

Reject if p-value below α.
In this procedure, added noise:

does not change underlying phenomena (fit, independence, etc. of
original data)
tends to make test statistic larger.
“p-values” appear smaller
leads to increased false discovery
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 2:

Re-use noisy data in test statistic. T =
∑k

i=1
(X̃i−Ẽi )

2

Ẽi
.

Estimate sampling distribution of T more accurately.
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Chi-Squared Testing

QQ Plot for Attempt 2

Red: sampling distribution under null hypothesis.
Blue: ideal behavior for valid p-values.
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 2:

Re-use noisy data in test statistic. T =
∑k

i=1
(X̃i−Ẽi )

2

Ẽi
.

Estimate sampling distribution of T more accurately.

p-values are valid.
Are we done?
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 3:
Sampling distribution (under null) from prior attempts is not
approximately chi-squared.
Is there a test statistic over the X̃i that is?
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 3:
Sampling distribution (under null) from prior attempts is not
approximately chi-squared.
Is there a test statistic over the X̃i that is?
Yes! [RK17] (projected statistic)
Appears to be more powerful.
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Chi-Squared Testing

Projected Statistic

Loss of power of other statistics compared to projected statistic
[RK17].
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 3:
Sampling distribution (under null) from prior attempts is not
approximately chi-squared.
Is there a test statistic over the X̃i that is?
Yes! [RK17] (projected statistic)
Appears to be more powerful.
Now are we done?
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Chi-Squared Testing

Testing with Differential Privacy

Data: X1 X2 · · · Xk−1 Xk

Suppose we are given noisy measurements.
Added Gaussian Noise.
Scale depends on privacy parameters.
X̃1 = X1 + N(0, σ2)

X̃2 = X2 + N(0, σ2)
...
X̃k = Xk + N(0, σ2)

Attempt 3:
Sampling distribution (under null) from prior attempts is not
approximately chi-squared.
Is there a test statistic over the X̃i that is?
Yes! [RK17] (projected statistic)
Appears to be more powerful.
Now are we done?
We could pick a better noise distribution! [AS20]
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Takeaway Messages

Differential Privacy is like .

Also like spending money.
Easy to waste privacy loss budget without “financial” planning.
Where do you add the noise?
What do you do after the noise?
Accurate tracking of total privacy cost [Mir17, BW18].
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Takeaway Messages

Takeaway Message II

Differentially private algorithms produce many data products:
e.g.,

Intermediate noisy measurements (safe to release)
Synthesized microdata (safe to release)
Source code (safe to release)

Demystified:
Noisy measurements are often just counts + noise
Noise is often unbiased
Variance and distribution are known
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Thank You
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Common Pitfalls
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Common Pitfalls

Normalizing Data

Data normalization and feature selection prior to model fitting.
In a dataset of Age, Weight, Height, Income:

Subtract off the mean age, divide by std of ages.
Subtract off mean weight, divide by std of weights.
Subtract off mean height, divide by std of heights.
Subtract off mean income, divide by std of income.

This affects sensitivity: adding/removing 1 record can affect entire
dataset.

Adding 1 billionaire can throw off mean and standard deviation.
Most of the normalized incomes are near 0.
Causes sensitivity to equal n, number of records.

Better: use some privacy budget for:
normalization.
feature selection

Suggestion: use robust statistical models.
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Common Pitfalls

Non-Numerical Operations

Operations that don’t return numbers still affect sensitivity.

Consider reporting the results of a clustering.

1 Cluster the data

2 Within each cluster compute the sum of points + Laplace noise
3 Within each cluster compute the number of points + Laplace noise

4 Divide, to get approximate cluster centers

5 Publish these cluster centers.
Common mistake: forgetting to use differential privacy in the initial
clustering.

Adding 1 record can result in a completely different clustering.
Instead, use a differentially private clustering algorithm (e.g., [McS09]).
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Common Pitfalls

Neighbors I

Bounded differential privacy:
Neighbors D1,D2 differ on value of one record.
n (# of respondents) comes for free.
n is the same for all records.

Unbounded differential privacy:
Neighbors D1,D2 differ on presence/absence of one record.
D1 and D2 have different number of respondents.
n is not free. If you need it, use privacy budget to get an approximate
value.
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Common Pitfalls

Neighbors 2

Must consider all possible D1 and D2 that are neighbors of each other.
Common mistake: only considering neighbors of current database.
Example database of ages capped at 115:
D∗ = {1, 2, 35, 36, 36, 99, 115}

What is sensitivity of the median?
Adding/removing 1 record for this dataset changes median by at most
1.
1 is not the sensitivity.
Consider D1 = {0, 0, 0, 115, 115}, D2 = {0, 0, 0, 115, 115, 115}
So sensitivity is 115/2.
More advanced techniques add less noise when median is stable (like in
D∗)

Smooth sensitivity [NRS07].
Private quantiles and Exponential Mechanism [Smi11, MT07].
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Additional Mechanisms

Additional Mechanisms

Exponential mechanism [DR14, MT07]
Noisy Max [DR14, DWZK19]
Sparse Vector [DR14, DWZK19]
Smooth Sensitivity [NRS07]
Example usage: [HLM12]
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Additional Mechanisms

Basic Mechanism Comparisons

Pure differential privacy (no δ).
L1 Sensitivity ∆

(1)
f : supD1∼D2

||f (D1)− f (D2)||1
Laplace mechanism. Noise scale: β.
Privacy is a function of ∆

(1)
f /β (this equals ε).

Approximate differential privacy
L2 Sensitivity ∆

(2)
f : supD1∼D2

||f (D1)− f (D2)||2
Laplace mechanism. Noise scale: β.
Privacy (ε, δ curve) is a function of ∆

(2)
f /σ [BW18]
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