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           D
esigning protocols for research us-

ing personal data entails trade-offs 

between accuracy and privacy. Any 

suggestion that would make empiri-

cal work less precise, open, represen-

tative, or replicable seems contrary 

to the needs and values of science. A careful 

reexamination has begun of what “accuracy” 

or “privacy” should mean and how research 

plans can balance these objectives.

Attitudes toward research that analyzes 

personal data should depend both on how 

well the protocol generates valuable statis-

tics and on how well it protects confidential 

details. There is always some risk of a leak, so 

it hardly makes sense to support 

a study incapable of producing 

valid and robust results. It would 

also be reassuring to know that the same or 

better scientific reliability could not be ob-

tained via some other protocol that provides 

more privacy protection.

PARSING PROTOCOLS. A given research 

plan can be assessed by comparing it along 

accuracy and privacy dimensions with other 

potential protocols. Many purport to deliver 

more than they do on either score. Research 

on even a simple population statistic—say, 

average salary—involves collecting, process-

ing, and releasing data. Various protocols 

can introduce obfuscation, or not, at any 

combination of these three stages. Eight 

examples follow, starting with traditional 

methods whose strengths and shortcomings 

motivate more recent approaches.

Open data. Suppose a researcher wishes to 

study faculty wages. Some U.S. states publish 

names, salaries, and other information about 

public university employees. There are no 

restrictions on data collecting and sampling, 

linking and analysis, or release and reuse. 

This is the ideal supported by “open data” 

advocates. It facilitates accuracy but not con-

fidentiality. People who care about keeping 

their pay private need to be aware of such 

policies before they decide to take a position.

Data enclaves for federal data. Suppose 

a researcher wishes to study U.S. wage and 

employment trends more broadly. Academ-

ics can apply for access to Research Data 

Centers run by the U.S. Census Bureau ( 1). 

Approved researchers are subject to pros-

ecution for misuse of private information 

under the same terms as government of-

ficials. Computations typically take place in 

a data enclave disconnected from the rest of 

the world. Papers must be reviewed by the 

Census Bureau before they can 

be released, mainly to ensure 

that information is aggregated 

or obfuscated enough to pro-

tect individuals’ privacy. This 

is akin to how pixelating the 

photo of an unfamiliar face 

renders it unidentifiable (see 

image). Federal enclaves have 

produced no known security 

breaches and are becoming 

less cumbersome to use, but 

replication is problematic.

Nondisclosure agreements 

for online business data. Sup-

pose a researcher wishes to 

study the relation between 

salary and other behaviors. 

Online companies often ask or 

draw inferences about users’ 

income, usually for unstated 

purposes. Researchers who 

seek such data rarely gain access without 

signing a nondisclosure agreement (NDA) 

that gives the company control over what 

details may be released. Arrangements like 

this usually protect proprietary interests of 

businesses rather than privacy interests of 

customers. NDAs can also preclude replica-

tion of results or reuse of data ( 2).

Anonymization of administrative data. 

Suppose a researcher wishes to study earn-

ings of cab drivers. New York City recently 

released “anonymized” data about every 

taxi trip taken in 2013. These data were re-

identified by exploiting weak encoding and 

by linking with other publicly available data 

sets. Not only is it possible to track earnings 

of each cabbie by name, one can also map 

GPS coordinates on either end of each ride 

and even deduce the trip times, fares, and 

tips of certain celebrities ( 3).

This joins many other examples of data 

sets that were released with assurances 

that they had been scrubbed of any person-

ally identifiable information but were easily 

linked with other public information to yield 

private confidences, including health records 

of Governor Weld ( 4) and movie rental histo-

ries of Netflix users ( 5). Sweeney even sug-

gests that a vast majority of Americans can 

be uniquely identified using only zip code, 

sex, and birthday data ( 6). So anonymization 

can reduce accuracy while failing to protect 

private information against “linkage attacks.” 

In other words, “sanitizing data doesn’t” and 

“deidentified data isn’t” ( 7).

Randomized response in survey data. A re-

searcher may want to estimate what percent-

age of a group lives in poverty and so gives 

each person a coin to flip, together with these 

instructions: “If it lands heads, truthfully an-

swer yes or no to the question ‘Is your income 

below the poverty line?’ If it lands tails, flip 

again. If the second toss is a 

head, answer truthfully, but if 

the second toss is a tail, then 

lie by giving the answer oppo-

site to what is true.” Twice the 

fraction of yes responses mi-

nus one-half provides a good 

estimate of the actual fraction 

sought ( 8).

Even if you know who an-

swered what, that does not 

tell you who is impoverished. 

The usefulness of this tech-

nique depends on having lots 

of participants, all of whom 

follow instructions. There are 

privacy-preserving variants 

that provide more efficient es-

timators, but some accuracy is 

sacrificed in any case.

Multiparty computation 

for reporting sensitive data. 

Suppose a researcher would like to calculate 

the average salary of a group, but without 

anyone ever communicating her own. Say 

there are three people. Each generates two 

random numbers and gives one to each of 

the other two participants. Everyone then 

adds the two random numbers she gener-

ated to her own salary, subtracts the two 

numbers she was given, and reports the re-

sult. All the random numbers cancel when 

these three results are added, so their sum 

equals the sum of the salaries. Dividing by 

three gives the average. Special and more 

convoluted computations can secretly carry 

out operations beyond just taking averages 

( 9).

Although no individual’s salary was com-

municated, this protocol does not necessar-

ily keep participants from finding out one 

another’s personal information. If, for ex-

ample, all but one collude by using the same 
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method to compute their average salary, that 

group could deduce what the salary was of 

their original colleague. The protocol deliv-

ers completely accurate results but can also 

endanger privacy.

Fully homomorphic encryption of cloud 

data. Suppose a researcher wishes to study 

salaries using bank data. People routinely 

and confidently send such information en-

crypted over the Internet. Financial insti-

tutions decrypt the messages and perform 

calculations. But what if the bank or other 

data receiver not only could perform calcu-

lations without ever decrypting the 

private information but also could 

return encrypted answers that only 

the sender could decode? Long 

thought to be impossible, “fully ho-

momorphic encryption” methods 

have recently been devised ( 10) to 

do just that. Most algorithms are 

still too slow for practical applica-

tions. Proposed protocols could, 

however, analyze a population’s en-

crypted data but only allow statis-

tics to be decrypted if participants 

verify that calculations have been 

done to their satisfaction ( 11).

By giving control over their data 

to potential subjects rather than 

to researchers, such techniques jeopardize 

plans for replicability and reuse, as well as 

for representative or even adequate sam-

pling. Supposing there are results to release, 

it may still be possible for a researcher to 

violate the privacy of individuals who par-

ticipate in the study. Any protocol that allows 

exact counts of subpopulations is vulnerable 

to a “differencing attack,” for example. To find 

out whether the CEO of a company earns 

more than $1 million, just make two simple 

inquiries: how many employees earn over $1 

million in salary, and how many who are not 

the CEO earn over $1 million. It may seem 

straightforward to rule out lines of question-

ing like this. Provably, however, no algorithm 

can reliably determine whether a given set 

of questions that seem to ask only about sta-

tistical aggregates would nevertheless have 

answers that, taken together, reveal private 

information ( 12).

Differential privacy for curated data. 

Consider a data set D that contains my per-

sonal information and another data set D´ 

that is missing my data but otherwise the 

same. A research protocol would be privacy-

preserving if it could not distinguish be-

tween D and an adjacent D´. It also would 

not be very useful. But what if the protocol 

could barely and rarely make such a dis-

tinction? Consider the probabilities that a 

certain methodology generates a given an-

swer to a given question when applied to 

D as compared with D´. The ratio of those 

two probabilities should be as close to one 

as possible. The log of that ratio measures 

the loss of privacy incurred when the proto-

col answers the given question. If the log is 

always less than ε for any adjacent data sets, 

the protocol provides ε-differential privacy.

Dwork, McSherry, Nissim, and Smith for-

mulated this definition, showed it captures 

basic intuitions about privacy, and devised 

research protocols that provide ε-differential 

privacy ( 13). Data are held by a trusted cu-

rator who only accepts certain questions 

from the investigator. The curator performs 

calculations behind a firewall but only re-

turns answers after adding a small amount 

of carefully chosen noise. It suffices, for ex-

ample, to draw noise from a Laplace distri-

bution with parameter 1/ε when responding 

to a counting query. There are limits on the 

type and number of questions allowed, as 

each could deplete a privacy budget by as 

much as ε.

Choosing ε for a differentially private pro-

tocol determines how the research will trade 

accuracy against privacy. The smaller ε is, the 

less leakage of information but at the cost of 

more noise. One promising application is the 

Census Bureau’s OnTheMap Project ( 14). Pay-

roll records in each state have been carefully 

perturbed and aggregated to create a “syn-

thetic database.” The public can query that 

database to receive approximate, but quite 

accurate, answers to a large class of counting 

and geographic questions ( 15).

PICKING PROTOCOLS. Setting aside ad-

ministrative, financial, legal, or institutional 

factors that do not bear directly on accuracy 

and privacy, some basic suggestions for com-

paring protocols are clear. Potential subjects 

considering participation in a study should 

ask if there is another protocol that would 

yield at least as reliable scientific results 

while offering better privacy protection. Re-

searchers designing studies should ask if the 

protocols will actually deliver the levels of ac-

curacy and privacy anticipated.

Funders or others deciding on whether a 

research plan moves forward should also ask 

about the broader incentive effects of using 

a particular methodology. Accuracy and pri-

vacy achieved by a protocol are public goods 

and, hence, subject to free-rider problems. To 

increase chances of curing a disease, say, ev-

ery patient wants accurate research but pref-

erably using other people’s data rather than 

their own. To decrease chances of linkage 

or other attacks, every researcher wants all 

other projects held to high thresholds of pri-

vacy protection but preferably not their own.

Policy-makers reviewing U.S. legislation 

should also ask about laws like FERPA, 

HIPAA, or the Privacy Act of 1974 that gov-

ern data collection and use by educators, 

health care providers, or federal officials, 

respectively (17). Do these actually promote 

accuracy and privacy, or are they based on 

outmoded ideas about anonymization and 

identifiability, for example? Unlike other 

countries, the United States has no legisla-

tion specifically regulating or facilitating 

the use of personal information by academic 

researchers.

Critically, society as a whole must also ask 

about promising and threatening aspects 

of new information technologies. How well 

society balances the accuracy and privacy of 

research protocols will determine the extent 

to which “big data” either allows everyone to 

benefit from advances in empirical science or 

only those private interests who hold enor-

mous and growing stores of sensitive infor-

mation about us all.   ■
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Privacy is breached when “secure” data can be linked with 

publicly available data.
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