Currency Choice in Contracts

Andres Drenik Rishabh Kirpalani Diego Perez
Columbia Univ Univ of Wisconsin-Madison New York Univ NBER

NBER SI 2020
Macroeconomics Within and Across Borders

Introduction and Motivation

- Central role of currency: serve as unit of account in credit contracts
- Coexistence of currencies in denomination of contracts
- Especially so in emerging economies
- Use of foreign currency linked to policy instability
- Recent attempts by governments to prevent dollarization

What We Do

- Questions:
- What determines currency denomination of private contracts?
- What are the implications for optimal policy?
- Framework:
- Economy with private contracts \& endogenous monetary policy
- Optimal currency choice trades-off price risk \& insurance property
- Government chooses inflation and is subject to policy risk
- Complementarities btw effectiveness of monetary policy \& use of LC contracts

Overview of Main Results

1. Nature of equilibrium depends on level of policy risk

- Countries with high (low) policy risk \rightarrow use of FC more (less) likely
- Intermediate policy risk \rightarrow multiple equilibria

2. Room for policy regulation of currency in contracts

- Equilibria can feature under use of local currency

3. Applications

- Trade-offs extend to model with on-equilibrium default
- International contracts - larger use of dollar, mon. pol. less effective
- Hysteresis due to currency matching of prior debt stocks

Outline

1. Baseline Model
1.1 Competitive Equilibria
1.2 Constrained Efficiency
2. Applications \& Extensions
2.1 Model with Default
2.2 International Contracts
2.3 Hysteresis

Environment

- Two periods
- Agents: private agents and government
- Buyers and sellers sign bilateral contract
- Sellers provide special good in exchange of future payments
- Payments denominated in local and/or foreign currency
- Government chooses price level in local currency
- Foreign currency price exogenous and stochastic
- Captures real exchange rate risk

Timing

Buyers and Sellers

- Sellers' preferences:

$$
u_{s}=-x+\mathbb{E}\left[\theta_{s} c_{s}\right]
$$

- Buyers' preferences:

$$
u_{b}=(1+\lambda) x+\mathbb{E}\left[\theta_{b} c_{b}\right]
$$

- x provision of special good. $\lambda>0 \rightarrow$ gains of trade
- c_{s}, c_{b} consumption of numeraire good
- θ_{s}, θ_{b} stochastic taste shocks w/ support $\left[\underline{\theta}_{i}, \bar{\theta}_{i}\right]$ and $\mathbb{E}\left[\theta_{i}\right]$
- captures reasons for why its desirable to shift resources btw agents
- both endowed with y numeraire good in $t=2$
- Assumption 1: $(1+\lambda) \mathbb{E}\left[\theta_{s}\right]-\mathbb{E}\left[\theta_{b}\right] \geq 0$
- Guarantees seller wants to sell and buyers want to buy

Bilateral Contracts

- Bilateral contract: $\left(x, b_{l}, b_{f}\right)$
- x units of special good provided to buyer in $t=1$
- b_{c} units of currency c promised to seller in $t=2$
- Assumptions:

1. Non state-contingent
2. Denominated in currencies: local (l) and foreign (f)
3. Payments always feasible

- Currencies: units of account, stochastic at $t=1$
- ϕ_{c} : value of currency c in terms of numeraire good
- High $\phi_{l} \leftrightarrow$ low inflation in local currency

Bilateral Contracts

Optimal contract for the buyer solves

$$
\max _{x \geq 0, b_{l} \geq 0, b_{f} \geq 0}(1+\lambda) x+\mathbb{E}[\theta_{b} \underbrace{\left(y-b_{l} \phi_{l}-b_{f} \phi_{f}\right)}_{c_{b}}]
$$

subject to

$$
\begin{array}{ll}
\text { Participation Const.: } & \mathbb{E}\left[\theta_{s}\left(b_{l} \phi_{l}+b_{f} \phi_{f}\right)\right] \geq x \\
\text { Payments Feasibility: } & b_{l} \phi_{l}+b_{f} \phi_{f} \leq y \quad \forall \phi_{l}, \phi_{f}
\end{array}
$$

Bilateral Contracts

- Participation constraint always binds
- Payment feasibility binds for worst deflation realizations: $\bar{\phi}_{l}, \bar{\phi}_{f}$
- Problem simplifies to

$$
\begin{array}{rl}
\max _{b_{l} \geq 0, b_{f} \geq 0} & \mathbb{E}\left[\left((1+\lambda) \theta_{s}-\theta_{b}\right)\left(b_{l} \phi_{l}+b_{f} \phi_{f}\right)\right] \\
\text { s.t. } & b_{l} \bar{\phi}_{l}+b_{f} \bar{\phi}_{f}=y
\end{array}
$$

- Solution: choose currency with highest marginal benefit M_{c}

$$
M_{c} \equiv\left((1+\lambda) \mathbb{E}\left[\theta_{s}\right]-\mathbb{E}\left[\theta_{b}\right]\right) \underbrace{\frac{\mathbb{E}\left[\phi_{c}\right]}{\bar{\phi}_{c}}}_{\text {Price Risk }}+\underbrace{\operatorname{cov}\left(\theta_{s}(1+\lambda)-\theta_{b}, \frac{\phi_{c}}{\bar{\phi}_{c}}\right)}_{\text {Insurance Properties }}
$$

Bilateral Contracts: Optimal Currency Choice

Government's Problem

- Government's problem is

$$
\begin{aligned}
\max _{\phi_{l}} & \theta_{b} C_{b}+\theta_{s} C_{s}-l\left(\phi_{l}\right) \\
\text { where } & C_{b}=y-\phi_{l} B_{l}-\phi_{f} B_{f} \\
& C_{s}=y+\phi_{l} B_{l}+\phi_{f} B_{f}
\end{aligned}
$$

- $l\left(\phi_{l}\right)=\frac{\psi}{2}\left(\phi_{l}-\hat{\phi}\right)^{2}$, loss from deviating from inflation target
- $\hat{\phi}$ stochastic inflation target $w /$ support $[\underline{\hat{\phi}}, \overline{\hat{\phi}}]$
$-\frac{\mathbb{E}[\hat{\phi}]}{\hat{\phi}}$ captures policy risk, main source of cross-country variation

What is the Inflation Loss?

- Third agent (household)
- Linear preferences on consumption \& quadratic disutility of labor
- Endowed w/ money claims \& consumption s.t. cash-in-advance constraint
- Government
- Needs to finance stochastic g
- Can tax labor τ \& choose inflation
- HH utility can be expressed as

$$
\text { const }-\psi(\phi_{l}-\underbrace{\left(\frac{\hat{\tau}(1-\hat{\tau})-g}{m}\right)}_{\hat{\phi}})^{2}
$$

Optimal Monetary Policy

- Optimal inflation policy given by

$$
\phi_{l}\left(B_{l}\right)=\hat{\phi}+\frac{1}{\psi}\left(\theta_{s}-\theta_{b}\right) B_{l}
$$

- High inflation when buyers value consumption more relative to sellers
- How does B_{l} affect M_{l} ?
- Higher $B_{l} \rightarrow$ inflation reacts more to $\theta_{s}, \theta_{b} \leftrightarrow$ more insurance
- Higher $B_{l} \rightarrow$ higher inflation volatility \leftrightarrow more price risk

Assumptions

Assumption 2:

$$
\frac{1}{2} \operatorname{var}\left(\theta_{s}-\theta_{b}\right)+\lambda\left[\operatorname{var}\left(\theta_{s}\right)-\operatorname{cov}\left(\theta_{s}, \theta_{b}\right)\right] \geq \kappa_{1}
$$

where κ_{1} depends on model parameters

Assumptions

Assumption 2:
When θ_{b}, θ_{s} are iid:

$$
\operatorname{var}(\theta)>(\bar{\theta}-\underline{\theta})
$$

1. What is needed?

- Sufficiently large variation in state-contingent mg. utilities

2. What does it imply?

- Insurance channel > Price risk channel
- Guarantees M_{l} increasing in B_{l}

3. What if it does not hold?

- Similar characterization of equilibria, policy prescriptions change

Competitive Equilibria for Different Policy Risk

Proposition:

- Definition of Equilibrium

Competitive Equilibria

Competitive Equilibria

Competitive Equilibria

Global Games Approach

- Policy risk is no longer common knowledge
- Each buyer-seller pair receives noisy signal

$$
\xi_{i}=\mathbb{E}[\hat{\phi}]+\epsilon_{i}
$$

where $\epsilon_{i} \sim U[-\eta, \eta]$

Proposition: For η small enough, there is a unique eq that satisfies:

$$
b_{l}(\xi)= \begin{cases}0 & \xi<\xi^{*} \\ \frac{y}{\bar{\phi}_{l}^{* *}} & \xi>\xi^{*}\end{cases}
$$

where $\mu_{1}>\frac{\xi^{*}}{\hat{\phi}}>\mu_{2}$

Equilibrium Selection for Different Policy Risk

Full Foreign Multiple Equilibria Full Local
(Full FC/Interior/Full LC)

Full Foreign
Global Games

Full Local
Global Games

Outline

1. Baseline Model
1.1 Competitive Equilibria
1.2 Constrained Efficiency
2. Applications \& Extensions
2.1 Model with Default
2.2 International Contracts
2.3 Hysteresis

Recent Examples of Policy Regulation

- Is regulating currency denomination of contracts optimal?
- Full prohibition of foreign currency contracts
- Brazil, Colombia
- Restrictions in foreign currency borrowing
- Croatia, Hungary, India, Poland and Turkey
- Restrictions on foreign currency pricing
- Peru
- Full dollarization in 2000
- Ecuador, El Salvador

Social Planner's Problem

- Choose allocation \& inflation s.t. same constraints as private agents

$$
\max _{\substack{x \geq 0, \phi_{l}, B_{l} \geq 0, B_{f} \geq 0}}^{\mathbb{E}\left[-x+\theta_{s} c_{s}\right]}+\underbrace{\mathbb{E}\left[(1+\lambda) x+\theta_{b} c_{b}\right]}_{u_{s}}-\mathbb{E}\left[l\left(\phi_{l}\right)\right]
$$

subject to

Budget Const.:

$$
\begin{aligned}
& c_{b}=y-B_{l} \phi_{l}-B_{f} \phi_{f} \\
& c_{s}=y+B_{l} \phi_{l}+B_{f} \phi_{f}
\end{aligned}
$$

Participation Const.:
Payments Feasibilty:
$\mathbb{E}\left[\theta_{s}\left(B_{l} \phi_{l}+B_{f} \phi_{f}\right)\right] \geq x$
$B_{l} \phi_{l}+B_{f} \phi_{f} \leq y \quad \forall\left(\phi_{l}, \phi_{f}\right)$

Monetary Policy:

$$
\phi_{l}=\hat{\phi}+\frac{1}{\psi}\left(\theta_{s}-\theta_{b}\right) B_{l}
$$

Constrained Efficiency for Different Policy Risk

- Given assumption 2 , problem of SP is strictly convex
\Rightarrow compare utilities at $B_{l}=0$ and $B_{l}=\frac{y}{\phi^{*}}$
- Trade-off given by:

Local price risk + Insurance - Cost of Inflation \gtrless Foreign price risk
Proposition: There exists $\mu^{s p}$ with $\mu_{2}<\mu^{s p}<\mu_{1}$ such that:

1. if $\frac{\mathbb{E}[\hat{\phi}]}{\hat{\phi}} \geq \mu_{S P}$, solution to Social Planner's problem is $B_{l}^{S P}=\frac{y}{\phi^{*}}$;
2. if $\frac{\mathbb{E}[\hat{\phi}]}{\bar{\phi}} \leq \mu_{S P}$, solution to Social Planner's problem is $B_{l}^{S P}=0$.

Constrained Efficiency for Different Policy Risk

Full Foreign Multiple Equilibria Full Local (Full FC/Interior/Full LC)

Full Foreign
Constrained Efficient

Full Local
Constrained Efficient

Constrained Efficiency for Different Policy Risk

Applications and Extensions

1. Model with Strategic Default
2. International Contracts
3. Hysteresis

Model with Strategic Default

- Allow buyers to default on payments in period 2
- No taste shocks
- Default is full, seller receives nothing
- If buyers default, suffer cost $\chi\left(\phi_{l} b_{l}+\phi_{l} b_{l}\right)$
- Cost of default stochastic: $\chi \sim F_{\chi}[\underline{\chi}, \bar{\chi}]$ with $\underline{\chi}<1<\bar{\chi}$
- Default costs depend on the level of defaulted debt
- Implies buyers optimally default when $\chi<1$
- If buyers default, government partially inflates away cost of default

Model with Strategic Default

- Allow buyers to default on payments in period 2
- No taste shocks
- Default is full, seller receives nothing
- If buyers default, suffer cost $\chi\left(\phi_{l} b_{l}+\phi_{l} b_{l}\right)$
- Cost of default stochastic: $\chi \sim F_{\chi}[\underline{\chi}, \bar{\chi}]$ with $\underline{\chi}<1<\bar{\chi}$
- Default costs depend on the level of defaulted debt
- Implies buyers optimally default when $\chi<1$
- If buyers default, government partially inflates away cost of default

Proposition:

The baseline model with taste shocks is identical to the model with default in eq outcomes

Economy with International Contracts

- International contracts more likely to be denominated in FC \rightarrow Figure
- Economy with two symmetric countries: i, j
- Continuum of buyers trade with continuum of sellers of other country
- Three available currencies: i, j, f
- Assumption: both countries have same level of policy risk

Economy with International Contracts

- International contracts more likely to be denominated in FC \rightarrow Figure
- Economy with two symmetric countries: i, j
- Continuum of buyers trade with continuum of sellers of other country
- Three available currencies: i, j, f
- Assumption: both countries have same level of policy risk

Domestic Contracts

Full Foreign Multiple Equilibria Full Local

Full Foreign

Hysteresis in Model with Credit Chains

- Dollarization persists after episodes of inflation stabilization $>$ Figure
- Buyers endowed with y and claims \hat{b}_{l}, \hat{b}_{f}
- Assumption: $\operatorname{var}(\theta)$ not too large

Hysteresis in Model with Credit Chains

- Dollarization persists after episodes of inflation stabilization *Figure
- Buyers endowed with y and claims \hat{b}_{l}, \hat{b}_{f}
- Assumption: $\operatorname{var}(\theta)$ not too large

Proposition: Optimal contract is given by:

$$
\begin{array}{lll}
\text { if } M_{l} \geq M_{f}: & b_{l}=\hat{b}_{l}+\frac{y}{\bar{\phi}_{l}} & b_{f}=\hat{b}_{f} \\
\text { if } M_{l}<M_{f}: & b_{l}=\hat{b}_{l} & b_{f}=\hat{b}_{f}+\frac{y}{\bar{\phi}_{f}}
\end{array}
$$

- Policy risk only determines currency of new borrowing flows
- Currency matching of stocks is optimal \Rightarrow path dependence
- Allows for more borrowing and provision of special good

Conclusion

- Study general equilibrium of economy with private contracts \& endogenous monetary policy
- Nature of equilibria depend on degree of policy risk
- Room for policy regulation of currency in contracts

Dollarization and Fiscal Policy Risk

Literature Review

- Currency choice in debt contracts, price setting, means of payment
- Matsutama et al (1993), Uribe (1997), Ize \& Levy Yeyati (2003), Caballero \& Krishnamurthy (2003), Schneider \& Tornell (2004), Engel (2006), Gopinath et al (2010), Doepke \& Schneider (2017), Bocola \& Lorenzoni (2018), Drenik \& Perez (2018)
- Global role of dollar
- Farhi \& Maggiori (2017), Gopinath \& Stein (2018), Maggiori et al (2018), Chahrour \& Valchev (2018), Eren \& Malamud (2019), Jiang, Krishnamurthy \& Lustig (2019)
- Currency and policy choice
- Neumeyer (1998), Chang and Velasco (2006), Rappoport (2009), Arellano \& Heathcote (2010), Ottonello \& Perez (2018), Du et al (2018), Fanelli (2018), Mukhin (2018)

Equilibrium

Definition: A competitive equilibrium is an allocation for private citizens $\left(x, b_{l}, b_{f}\right)$, aggregate denomination choices $\left(B_{l}, B_{f}\right)$, and govt policy ϕ_{l} such that:

1. Given ϕ_{l}, and (B_{l}, B_{f}) the private allocation solves the contracting problem
2. Given B_{l}, ϕ_{l} solves govt problem
3. Aggregate choices coincide with private ones, $b_{l}=B_{l}$ and $b_{f}=B_{f}$

- Back

Model with Strategic Default

- Allow buyers to default on payments in period 2
- Allows private contracts to introduce state contingency
- No taste shocks
- Default is full, seller receives nothing
- If buyers choose to default, suffer cost $\chi\left(\phi_{l} b_{l}+\phi_{l} b_{l}\right)$
- Cost of default stochastic: $\chi \sim F_{\chi}[\underline{\chi}, \bar{\chi}]$ with $\underline{\chi}<1<\bar{\chi}$
- Default costs depend on the level of defaulted debt
- Implies buyers optimally default when $\chi<1$

Fixed Costs of Default Model

Contract Problem

- Optimal contract for the buyer solves

$$
\begin{aligned}
& \max _{x \geq 0, b_{l} \geq 0, b_{f} \geq 0}(1+\lambda) x \\
& +\mathbb{E}[\underbrace{\left(y-\phi_{l} b_{l}-\phi_{f} b_{f}\right)}_{c_{b} \text { if repay }} \mathbb{I}_{\chi \geq 1}+\underbrace{\left(y-\chi\left(\phi_{l} b_{l}+\phi_{f} b_{f}\right)\right)}_{c_{b} \text { if default }} \mathbb{I}_{\chi<1}]
\end{aligned}
$$

subject to

$$
\text { Partipation constraint: } \quad \mathbb{E}\left[\left(b_{l} \phi_{l}+b_{f} \phi_{f}\right) \mathbb{I}_{\chi \geq 1}\right] \geq x
$$

Payments feasibility:

$$
b_{l} \phi_{l}+b_{f} \phi_{f} \leq y \quad \forall \phi_{l}, \phi_{f}
$$

Default Model: Government Problem

- Government maximizes utility of buyers and sellers

$$
\max _{\phi_{l}} \underbrace{-\chi \phi_{l} B_{l}}_{\text {loss from default }} \mathbb{I}_{\chi \geq 1}-l\left(\phi_{l}\right)
$$

- Optimal inflation choice

$$
\phi_{l}= \begin{cases}\hat{\phi} & \text { if } \chi \geq 1 \\ \hat{\phi}-\frac{1}{\psi} \chi B_{l} & \text { if } \chi<1\end{cases}
$$

- If buyers default, government partially inflates away cost of default
- Given policy risk, local currency has a higher marginal benefit

Mapping of Default Model into Baseline

- Define

$$
\theta_{s}=\left\{\begin{array}{ll}
0 & \text { if } \chi<1 \\
1 & \text { if } \chi \geq 1
\end{array} \quad \text { and } \quad \theta_{b}= \begin{cases}\chi & \text { if } \chi<1 \\
1 & \text { if } \chi \geq 1\end{cases}\right.
$$

Proposition:

The baseline model with the above taste shocks is identical to the model with default in eq outcomes

Assumption 1': $\underbrace{\lambda\left(1-F_{\chi}(1)\right)}_{\text {gains of trade }}>\underbrace{\mathbb{E}[\chi \mid \chi<1] F_{\chi}(1)}_{\text {losses from default }}$
Additionally, if assumption above is satisfied, then the model also satisfies the original assumptions 1 and 2

Dollarization in International \& Domestic Contracts

Sources: Gopinath (2015), Ize, Levy-Yeyati (2006) • Back

Economy with International Contracts

- Economy with two symmetric countries: i, j
- Continuum of buyers and sellers in each country
- Buyers trade with sellers of other country
- Three available currencies: i, j, f
- Assumption: both countries have same level of policy risk

$$
\frac{\mathbb{E}\left[\hat{\phi}_{i}\right]}{\hat{\hat{\phi}}_{i}}=\frac{\mathbb{E}\left[\hat{\phi}_{j}\right]}{\hat{\hat{\phi}}_{j}}
$$

- Focus on symmetric eq \& region with full use of f as unique eq

Economy with International Contracts

- Optimal contract for buyer in country i and seller in country j solves

$$
\max _{x_{i}, b_{i i} \geq 0, b_{i j} \geq 0, b_{i f} \geq 0}(1+\lambda) x_{i}-\mathbb{E} \theta_{i b}\left(\phi_{i} b_{i i}+\phi_{j} b_{i j}+\phi_{f} b_{i f}\right)
$$

subject to
Participation Const.: $\quad-x_{i}+\mathbb{E} \theta_{j s}\left(\phi_{i} b_{i i}+\phi_{j} b_{i j}+\phi_{f} b_{i f}\right) \geq 0$
Payments Feasibility: $\quad \phi_{i} b_{i i}+\phi_{j} b_{i j}+\phi_{f} b_{i f} \leq y \quad \forall \phi_{i}, \phi_{j}, \phi_{f}$

- Government of country i maximizes utility of its citizens only

$$
\phi_{i}=\hat{\phi}_{i}+\frac{1}{\psi}\left(\theta_{i s} B_{j i}-\theta_{i b} B_{i i}\right)
$$

CE in Economy with International Contracts

Domestic Contracts

Full Foreign
International Contracts

CE in Economy with International Contracts

- Government's ability to provide insurance is undermined

$$
\underbrace{\operatorname{cov}\left(\left(\theta_{j s}(1+\lambda)-\theta_{i b}\right), \frac{\phi_{i}}{\bar{\phi}_{i}}\right)}<\underbrace{\operatorname{cov}\left(\left(\theta_{i s}(1+\lambda)-\theta_{i b}\right), \frac{\phi_{i}}{\bar{\phi}_{i}}\right)}
$$

International Contract
$\phi_{i}=\hat{\phi}_{i}+\frac{1}{\psi}\left(\theta_{i s}-\theta_{i b}\right) B_{i} \quad \phi_{i}=\hat{\phi}_{i}+\frac{1}{\psi}\left(\theta_{i s}-\theta_{i b}\right) B_{i}$

Hysteresis in Dollarization

Hysteresis in Model with Credit Chains

- Buyers endowed with y and claims \hat{b}_{l}, \hat{b}_{f}
- Currency claims from prior contract in which buyer was seller
- Optimal contract for the buyer solves

$$
\max _{x \geq 0, b_{l} \geq 0, b_{f} \geq 0}(1+\lambda) x+\mathbb{E}\left[\theta_{b}\left(y-\left(b_{l}-\hat{b}_{l}\right) \phi_{l}-\left(b_{f}-\hat{b}_{f}\right) \phi_{f}\right)\right]
$$

subject to
Participation Const.: $\quad x \leq \mathbb{E}\left[\theta_{s}\left(b_{l} \phi_{l}+b_{f} \phi_{f}\right)\right]$
Payments Feasibility: $\quad y \geq\left(b_{l}-\hat{b}_{l}\right) \phi_{l}+\left(b_{f}-\hat{b}_{f}\right) \phi_{f} \quad \forall \phi_{l}, \phi_{f}$

- Government's problem remains the same
- Additional assumption: $\operatorname{var}(\theta)$ not too large

Hysteresis in Model with Credit Chains

Proposition: Optimal contract is given by:

$$
\begin{array}{lll}
\text { if } M_{l} \geq M_{f}: & b_{l}=\hat{b}_{l}+\frac{y}{\bar{\phi}_{l}} & b_{f}=\hat{b}_{f} \\
\text { if } M_{l}<M_{f}: & b_{l}=\hat{b}_{l} & b_{f}=\hat{b}_{f}+\frac{y}{\bar{\phi}_{f}}
\end{array}
$$

- Policy risk only determines currency of new borrowing flows
- Currency matching of stocks is optimal
- Allows for more borrowing and provision of special good
- Leads to path dependence

Model with Fixed Cost of Default

- Same model as before with different cost of default
- If buyers choose to default, suffer cost $\chi \in\left\{\chi_{L}, \chi_{H}\right\}$
- Implies buyers optimally repay when $\phi_{l} b_{l}+\phi_{f} b_{f}<\chi$
- No taste shocks $\left(\theta_{i}=1\right)$ nor policy risk $\left(\hat{\phi}_{l}=\phi_{f}=1\right)$
- Government problem
- If $\hat{\phi}_{l} b_{l}+\phi_{f} b_{f}<\chi$, set $\phi_{l}=\hat{\phi}_{l}$
- If not, set ϕ_{l} to induce repayment as long as

$$
\chi>\frac{\psi}{2}\left(\frac{\chi-\phi_{f} B_{f}}{B_{l}}-\hat{\phi}\right)^{2}
$$

Equilibrium Characterization

Proposition

There exists an eq with full use of FC \& another with full use of LC.
If ψ is small enough, aggregate welfare is higher in the one with LC.

- Complementarities btw private and govt actions still in place
- Higher use of LC makes govt use inflation to avoid default
- State-contingent inflation makes LC more attractive

