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Abstract

In a model with fund managers evaluated relative to benchmark indices, stocks belong-
ing to these benchmarks have lower expected returns. Motivated by theory, we con-
struct a stock-level measure of benchmarking intensity (BMI) from a unique dataset of
33 U.S. equity indices. The BMI of a stock is computed as the cumulative weight of the
stock in all benchmarks, weighted by assets under management following each bench-
mark. Exploiting a discontinuity in the BMI of stocks at the bottom of the Russell
1000 and the top of the Russell 2000 index, we show that stocks with higher BMIs in-
deed have lower long-run returns. A growing literature similarly uses the Russell cutoff
for identification. We document emerging challenges to this approach: (1) the change
in incentives to hold stocks around the cutoff of funds benchmarked to the Russell
MidCap/1000/2000 and (2) the growing importance of other benchmarks, including
recently introduced CRSP indexes.
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1 Introduction

The asset management industry has been growing in size and importance over time.
As of 2018, it has amassed more than $74 trillion1 in assets under management. A large
fraction of these funds are managed against benchmarks (e.g., the S&P 500, FTSE-Russell
indexes, etc.). Benchmarks convey to end investors information about the types of stocks
a fund invests in and act as a useful tool for performance evaluation of fund managers.
With growing investor appetite for different investment styles, benchmarks are becoming
increasingly heterogeneous. Figure 1 plots assets under management of US domestic equity
mutual funds, by benchmark. The heterogeneity of benchmarks is apparent from the figure,
especially for mid-cap and small stocks. Our objective is to link benchmark membership to
stock prices and expected returns, as well as to stock ownership by asset managers.

Figure 1: Assets benchmarked to indices

(a) All stocks (b) Mid- and small-cap stocks

This figure shows the evolution of the share of benchmark groups in the total assets under management of US
domestic equity mutual funds. Mid- and small-cap stocks are in 75th−95th percentile of market capitalization.
All reported indices include blend, value and growth types, e.g. Russell 1000 above represents the sum of
Russell 1000, Russell 1000 Value and Russell 1000 Growth.

In this paper, we argue that stocks included in a benchmark form a preferred habitat
for fund managers evaluated against that benchmark. That is, benchmarked fund managers
have an additional reason to hold stocks in their benchmarks, which results in an inelastic
demand for these stocks. We derive a measure, which we call the benchmarking intensity,
1Based on BCG report, https://www.bcg.com/en-gb/publications/2019/global-asset-management-will-
these-20s-roar.aspx.
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that reflects the size of the preferred habitat investors. We define the benchmarking intensity
of a stock as the cumulative weight of the stock in all benchmarks, weighted by assets under
management following each benchmark. Exploiting a discontinuity in the benchmarking
intensity of stocks at the bottom of the Russell 1000 and the top of the Russell 2000 index,
we test the prediction of the theory that stocks with higher benchmarking intensities have
higher prices and lower expected returns. The data supports these predictions. We also
document that, consistent with the preferred habitat view, both active and passive managers
buy additions to their benchmarks and sell deletions. Interestingly, these trends are harder
to spot with coarse data on benchmarks but they become apparent if we use more granular
data.2

We start with a simple model that highlights the channel through which a stock’s
benchmarking intensity affects its price and expected return. The model features fund man-
agers alongside standard direct investors. All investors are risk-averse. A fund manager’s
compensation depends on performance relative to her benchmark. The model predicts that
such performance evaluation makes benchmark stocks the preferred habitat of managers
evaluated against that benchmark. The fund manager’s higher demand for her benchmark
stocks makes prices of these stocks higher in equilibrium and their expected returns lower.
This effect is permanent, persisting for as long as the stocks remain in the benchmark. In an
equilibrium with heterogeneous benchmarks, the variable that captures the additional (in-
elastic) demand of benchmarked managers – beyond what the standard risk-return trade-off
would predict – is exactly the benchmarking intensity.

In our empirical analysis, we test whether stocks with higher benchmarking intensi-
ties have lower long-run returns. Identifying this effect is challenging. Stocks with higher
benchmarking intensities are included in more benchmarks and have larger weights in them.
Since most of the benchmarks are value-weighted, our measure is closely tied to firm size.
As the firm grows, its benchmarking intensity increases but its expected return goes down
(due to the size effect). Moreover, as the firm grows, its stock’s liquidity improves, which in
turn leads to lower expected returns. There may be other confounding effects if one simply
compares stocks in major benchmarks to those that are not. Our solution to these challenges
is to exploit the cutoff between the Russell 1000 and 2000 indexes, which separates stocks
that are very similar in size and other characteristics but differ significantly in terms of their
benchmarking intensities. The close-to-random index assignment into the Russell 1000 and
2000 indexes serves as a source of (conditionally) exogenous variation in the benchmarking
intensity. In other words, we use index membership as an instrument for the benchmarking
2We scrape historical mutual fund benchmarks directly from the website of the US Securities and Exchange
Commission.
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intensity. We perform our analysis on stocks added to or deleted from the Russell 2000,
using stocks close to the cutoff that do not switch indices as the control group.

We find that stocks with higher benchmarking intensities have lower long-run returns.
An increased inelastic demand of benchmarked fund managers does indeed lead to signifi-
cantly lower expected returns of these stocks for horizons of up to 5 years. This result is
robust to alternative specifications and we point out that its size depends on whether stocks
switching indices multiple times are excluded from the sample, as our theory would suggest.
We can interpret our finding as a negative long-run return of a long-short portfolio that buys
stocks with high BMI and sells stocks with low BMI. Corroborating the results of Chang,
Hong, and Liskovich (2014), we also document price pressure upon index reconstitution (in-
dex effect). We link price pressure experienced by a stock to the change in its benchmarking
intensity.

We show that both active and passive investors have a considerable fraction of hold-
ings concentrated in their benchmarks and that they rebalance around the Russell cutoffs
according to their benchmarks. The majority of recent studies attributed the discontinuities
in ownership around the cutoff to passive investors, i.e., index and exchange-traded funds.
Consistent with the literature, we find highly significant rebalancing of index additions and
deletions for passive funds in line with the direction imposed by their benchmarks. For
example, passive funds benchmarked to the Russell 2000 increase their ownership in stocks
added to the Russell 2000 by 103bps. These funds also sell deleted stocks in similar pro-
portions. The granularity in our data allows us to see the same pattern in active funds.
We find that active funds benchmarked to the Russell 2000 also sell deletions, decreasing
their ownership share by 100bps. Active funds benchmarked to the Russell 1000 and Russell
MidCap increase their ownership shares in stocks added to the Russell 1000 and MidCap by
23bps and 68bps, respectively.

We highlight several considerations that may affect research design based on the
Russell cutoff. First, our model abstracts from transaction costs but, in practice, they are
important. Fund managers often deal with them using a portfolio construction approach
known as optimized sampling. This approach implies a trade-off between the fund’s tracking
error and transaction costs and often leads to leaving out the smallest stocks in the bench-
mark. In our data, it mostly affects stocks added to the Russell 1000 after 2007, when a
change in Russell’s reconstitution methodology (the introduction of ‘banding’) increased the
potential contribution of these stocks to the tracking error. Second, we document consid-
erable growth of the CRSP indexes after 2013 and explain how index construction poses a
confounding problem for using the Russell cutoff. This may inform the growing literature
that exploits the Russell cutoff for identification.
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Related research. This paper is related to several strands of literature, includ-
ing equilibrium asset pricing with benchmarked fund managers, index effect, and empirical
research on the effects of institutional ownership.

Among theoretical contributions, the first paper to study benchmarking is Brennan
(1993). Brennan derives a two-factor asset pricing model in a two-period economy with a
benchmarked fund manager. Cuoco and Kaniel (2011), Basak and Pavlova (2013) and Buffa,
Vayanos, and Woolley (2014) investigate equilibrium asset pricing effects of delegated portfo-
lio management in dynamic economies. The closest paper to ours in this strand of literature
is Kashyap, Kovrijnykh, Li, and Pavlova (2018). None of these works, however, considers
heterogeneous benchmarks. The only papers that do are Barberis and Shleifer (2003) and
Buffa and Hodor (2018), but they focus primarily on asset return comovement. Barberis and
Shleifer consider investors with different styles, which one can interpret as different bench-
marks. Our results also highlight heterogeneous habitats of equity fund managers, which
relates our work to preferred habitat models of the term structure of interest rates (e.g.,
Vayanos and Vila (2009)).

Both our theoretical and empirical results are related to the index effect literature.
The index effect was first documented by Shleifer (1986) and Harris and Gurel (1986) for
additions to the S&P 500 index and subsequently found in many other markets and asset
classes.3 The existence of the index effect challenges the standard theories, which predict
that demand curves for each stock are very elastic and therefore index inclusion should
have no effect on asset prices and expected returns. The literature offers four competing
hypotheses that explain the index effect: the price pressure hypothesis, imperfect substitutes
hypothesis, information hypothesis, and information costs and liquidity hypothesis. The latter
two explain the index effect by reduced information asymmetry and improvements in investor
recognition and liquidity upon index inclusion, respectively. Recent literature has contested
these views, showing a large and symmetric index effect for stocks with similar liquidity and
investor recognition moving between the Russell 1000 and 2000 indexes (Chang, Hong, and
Liskovich (2014)).

The price pressure hypothesis posits that demand curves for stocks are downward
sloping but only in the short term, as dealers accommodate excess demand for newly included
stocks (Scholes (1972)). As dealers demand compensation for providing liquidity around
index inclusions, prices of included stocks should rise but then revert quickly back to the
3Most of the studies focus on S&P 500 and Russell composition changes, though others also cover such
index families as MSCI, DJIA, Nikkei, FTSE, CAC, Toronto Stock Exchange Index, etc. For example,
Chen, Noronha, and Singal (2005) documents a long-lasting price increase of the S&P 500 additions, which
increases in magnitude through time, but not deletions. Hacibedel and van Bommel (2007) also find
permanent price increase for emerging markets indices within the MSCI family.
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pre-inclusion levels. Evidence in support of the price pressure hypothesis is mixed; however,
index effects lasting for over a month have been documented even for mechanical index
reconstitutions4. Finally, imperfect substitutes hypothesis posits that long-term demand for
securities is not perfectly elastic since securities are not perfect substitutes and therefore
the price pressure from index additions is permanent. Our preferred habitat view provides
a microfoundation for the imperfect substitutes hypothesis. In our model, fund managers
affect stock prices and expected returns for as long as the stocks remain in the benchmark.

The closest empirical work to ours is Chang, Hong, and Liskovich (2014). It is the
first paper to build a regression discontinuity design (RDD) on the cutoff between the Russell
1000 and 2000 indexes in order to quantify the price pressure stemming from institutional
demand. The paper finds a 5% index effect in the month of addition to and deletion from
the Russell 2000. It also documents a decreasing trend in this index effect and attributes it
to alleviation of limits to arbitrage. Even though we use the same cutoff for identification,
we focus on the long-run returns (twelve months to five years). Chang, Hong, and Liskovich
assume that assets under management benchmarked to the Russell 1000 and Russell 2000
are of similar magnitude and focus only on discontinuities in stocks’ index weights upon
reconstitutions. In constrast, our measure, the benchmarking intensity, takes into account
both assets benchmarked to each index and index weights. It also picks up cutoffs of other
indices around the Russell 1000/2000 cutoff, which confound the results in the latter part of
the sample, and provides an alternative explanation to their findings.

There is a growing body of literature studying corporate outcomes of institutional
ownership using the Russell cutoff.5 In an attempt to reconcile differing findings, there has
been debate on the implementation of the identification strategy that exploits the Russell
cutoff. Some early papers used June (post-announcement) index weights in their empiri-
cal approach. It was later criticized by Appel, Gormley, and Keim (2019a) and Wei and
Young (2017), among others, who highlighted a mechanical relationship between institu-
tional ownership and June weights. Importantly, most researchers cannot observe the true
running variable used to assign stocks into indices. Hence, identification requires either
predicting index membership using public data as of May or assuming that controlling for
researcher-constructed running variable achieves conditional exogeneity of the index dummy.
We address all aforementioned points by (1) using Russell’s proprietary running variable,
which delivers 99% accuracy of assignment and (2) orthogonalizing any remaining error by
instrumenting index membership. Furthermore, we discuss the implications of industry-wide
4See, for example, Kaul, Mehrotra, and Morck (2000).
5The list of papers includes but is not limited to: Appel, Gormley, and Keim (2019b), Glossner (2018),
Heath, Macciocchi, Michaely, and Ringgenberg (2018), Schmidt and Fahlenbrach (2017), Appel, Gormley,
and Keim (2016), Crane, Michenaud, and Weston (2016).
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practice of optimized sampling, which affects funds’ rebalacing around the cutoff, and shed
light on the identification threat from the entry of the CRSP indexes with an overlapping
cutoff.

The paper proceeds as follows. Section 2 explains the implications of heterogeneous
benchmarks for stock returns. In Section 3, we construct the measure of benchmarking
intensity, describe our identification strategy and present estimation results. We discuss
ownership trends and relate them to funds’ preferred habitats in Section 4. Section 5 con-
cludes. Omitted details are relegated to the Appendix.

2 Model of Delegated Asset Management with Het-
erogeneous Benchmarks

To illustrate the main mechanism, we first develop a simple model of asset prices in
the presence of benchmarking. It builds upon Brennan (1993) and Kashyap, Kovrijnykh,
Li, and Pavlova (2018) and introduces heterogeneous fund managers whose performance is
evaluated relative to a variety of benchmarks. The goal of the model is to derive a relationship
between benchmarking intensity, our measure of capital that is inelastically supplied by fund
managers, and stock returns.

2.1 Model

Except for the presence of fund managers, our environment is standard. There are
two periods, t = 0, 1. The financial market consists of a riskless asset with an exogenous
interest rate normalized to zero (e.g., a storage technology) and N risky assets paying cash
flows Di, i = 1, . . . , N in period 1. The cash flows of the risky assets are given by

Di = Di + βiZ + εi, ci > 0, i = 1, . . . , N,

where Z ∼ N(0, σ2
z) is a common shock and εi ∼ N(0, σ2

ε ) is an idiosyncratic one. The
vectors D ≡ (D1, . . . , DN)> and S ≡ (S1, . . . , SN)> denote vectors of period-1 cash flows
and period-0 risky asset prices, respectively. Period-1 risky asset prices equal to D. The
risky assets are in fixed supply of θ ≡ (θ1, . . . , θN) shares. It is convenient to introduce the
notation Σ ≡ Σz + INσ

2
ε for the variance-covariance matrix of cash flows D, where Σz is a

N ×N matrix with a typical element βiβjσ2
z and IN is an N ×N identity matrix. We also

set D ≡ (D1, . . . , DN)> and β ≡ (β1, . . . , βN)>.
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There are J benchmark portfolios that are used for performance evaluation. Each
benchmark j is a portfolio of ωj ≡ (ω1j, . . . , ωNj)> shares of the assets described above.
Some components of ωj can be zero.

There are two types of investors: direct investors and fund managers. Direct investors,
whose mass in the population is λD, manage their own portfolios. Fund managers manage
portfolios on behalf of fund investors. Fund investors can buy the riskless asset directly, but
cannot trade stocks; they delegate the selection of their portfolios to portfolio managers.
The managers receive compensation from fund investors. Each manager is evaluated relative
to a benchmark. We denote the mass of managers evaluated relative to benchmark j by λj.6

All investors have a constant absolute risk aversion utility function over terminal wealth (or
compensation), U(W ) = − exp−γW , where γ is the coefficient of absolute risk aversion.

The terminal wealth of a direct investor is given by W = W0 + θ>D(D−S), where the
N × 1 vector θD denotes the number of shares held by the direct investor, and W0 is the
investor’s initial wealth. The direct investor chooses a portfolio θD to maximize his utility
U(W ). A fund manager’s j compensation wj consists of three parts: one is a linear payout
based on absolute performance of the fund, the second piece depends on the performance of
the fund relative to the benchmark portfolio j, and the third is independent of performance
(c). Specifically,

wj = aRj + b(Rj −Bj) + c, a ≥ 0, b > 0

where Rj ≡ θ>j (D − S) is the performance of the fund’s portfolio and Bj ≡ ω>j (D − S) is
the performance of benchmark j.7 The parameters a and b are the contract’s sensitivities to
absolute and relative performance, respectively. The fund manager chooses a portfolio of θj
shares to maximize his utility U(wj).

2.2 Portfolio Choice and Asset Prices

The optimal portfolio of the direct investors is the standard mean-variance portfolio:8

θD = 1
γ

Σ−1
(
D − S

)
. (1)

6For simplicity, we assume that each fund investor employs one fund manager, but this can easily be relaxed.
7Ma, Tang, and Gómez (2019) analyze compensation of fund managers in the US mutual fund industry and
provide evidence supporting our specification here. Endogenizing this compensation structure is beyond the
scope of this paper; see Kashyap, Kovrijnykh, Li, and Pavlova (2020) who derive it as part of an optimal
contract.

8We omit proofs in the main text and relegate them to Appendix B, available upon request.
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In contrast, the fund managers do not have the same risk-return trade-off as direct investors,
because of their compensation contracts. The optimal portoflio of manager j is given by

θj = 1
γ(a+ b)Σ−1

(
D − S

)
+ b

a+ b
ωj. (2)

The fund manager splits his risky asset holdings across two portfolios: the mean-variance
portoflio (the first term in (2)) and the benchmark portfolio (the second term). The latter
portfolio arises because the manager hedges against underperforming the benchmark. Con-
sistent with the preferred habitat view, the manager thus has a higher demand for stocks in
her benchmark. Notice that the demand for the benchmark portfolio ωj is inelastic. It does
not depend on the riskiness of the assets and depends only on the parameters of the com-
pensation contract. It follows that, ceteris paribus, stocks with a higher benchmark weight
have a higher weight in the fund manager’s portfolio.

By clearing markets for the risky assets, λDθD +∑J
j=1 λjθj = θ, we compute equilib-

rium asset prices.

S = D − γAΣ
θ − b

a+ b

J∑
j=1

λjωj

 , (3)

where A ≡
[
λD +

∑
j
λj

a+b

]−1
modifies the market’s effective risk aversion.9

Equation (3) elucidates the determinants of the index effect in our model. The index
effect manifests itself through the benchmarking-induced price pressure term ∑J

j=1 λjωj.
This term reflects the cumulative inelastic demand of fund managers and motivates our
benchmarking intensity measure used in the empirical part of the paper. Equation (3)
implies that if a stock gets added to a benchmark or if its weight in a benchmark increases,
its price goes up. Another implication is that the larger the mass of fund managers (λj’s)
following a benchmark, the higher the benchmarking-induced price pressure and hence the
bigger the index inclusion effect. The more benchmarks a stock belongs to and the bigger its
weight in the benchmarks, the more demand from fund managers it attracts and therefore
the higher the stock’s price. Another implication is that the larger the mass of managers
following a benchmark (λj), the higher the price pressure.
9Our model can be extended to incorporate passive managers, who simply hold the benchmark portfolio.
Suppose the total mass of fund managers benchmarked to index j, λj , consists of a mass λP

j of passive
managers and a mass λA

j of active. Then the expression for stock prices is:

S = D − γAΣ

θ − J∑
j=1

[
b

a+ b
λA

j ωj + λP
j ωj

]
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Our next set of predictions is about the expected stock returns (or the cost of equity).
The expected return of stock i, expressed as a per-dollar return E[ri] ≡ (Di−Si)/Si, is given
by

E[ri] = γA

Si
βiσ

2
zβ
>

θ − b

a+ b

J∑
j=1

λjωj

+ γA

Si
σ2
ε

θi − b

a+ b

J∑
j=1

λjωij

 (4)

Equation (4) implies that the price pressure we discussed above is permanent, and it lasts
for as long as a stock remains in the fund managers’ benchmarks. Therefore, ceteris paribus,
stocks with higher benchmarking intensities have lower expected returns. Furthermore, if a
stock’s benchmarking intensity goes up (e.g., due to an index inclusion), its price should rise
upon announcement and the expected return after the announcement should be lower.

In summary, our model produces the following predictions:
Prediction 1: Stocks with higher benchmark intensities have lower expected returns.
Prediction 2: If a stock’s benchmarking intensity goes up (e.g., due to an index

inclusion), its price should rise.
Prediction 3: If a stock’s benchmarking intensity goes up, the funds’ ownership of

the stock (∑j θij) should rise.

3 Benchmarking Intensity and Long-Run Returns

3.1 Empirical Measure of Benchmarking Intensity

Guided by the model, we calculate the benchmarking intensity (BMI) for stock i in
month t as

BMIit =
J∑
j=1

ωijtλjt

where λjt = Λjt∑J

j=1 Λjt
is the assets under management (AUM) share of mutual funds bench-

marked to index j in month t, with Λjt being their dollar AUM10, and ωijt is the weight of
stock i in index j in month t. In our annual panel, we use BMIit calculated as of September.11

Because the largest market indices are value-weighted, BMI is closely tied to the
market cap of the company. In the literature, firm size was related to stock returns, which
poses a challenge for our empirical analysis.

Even though benchmarking intensity is typically slow-moving, considerable variation
comes from index membership. If a stock switches indices, for example, moves out of the S&P
10We also experimented with scaled AUM shares. For example, we used shares scaled to the industry AUM
in 2014 as it is the time when the CRSP indexes were introduced, completing our universe of benchmarks.

11The reason is that we want to avoid sorting on the initial price pressure that occurs mostly in June as
discussed in later sections.
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500 index, its BMI changes. A useful illustration is a natural gas company Range Resources
Corp. (ticker RRC). Figure 2 depicts a year-on-year evolution of its benchmarking intensity.
Despite the evident comovement between size and benchmarking intensity, the latter has
slightly more variation due to the changing index membership and index asset flows: in 2005
RRC joins the Russell 1000 and Russell MidCap, in 2008 – S&P 500, in 2012 RRC gets into
the CRSP Mid Cap, in 2018 it exits the S&P 500 and gets added to S&P 400 and the CRSP
Small Cap.

Figure 2: Benchmarking Intensity of RRC

This figure plots the benchmarking intensity (left axis) and the total market value (right axis) of RRC stock
over time. Arrows point to the years when the stock was added to the benchmarks. Total market value is
scaled by 2,500.

Figure 3 illustrates the contribution of membership in each index into the bench-
marking intensity of RRC (Panel (a)). Even though most of the time the stock’s S&P 500
membership contributes over 50%, size and variation of other components are significant.
Panel (b) of the same Figure shows how much different benchmark styles (i.e., value, growth,
and blend) contribute to RRC’s BMI. In our data, we only have style indices for the Russell
and CRSP families, so the rest is attributed to blend. Even with this limitation, it is ap-
parent that style benchmarks occupy a considerable fraction of BMI. These two illustrations
highlight one of the key contributions of our measure – it takes into account the heterogeneity
of benchmarks and overlaps between them.
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Figure 3: Decomposition of the Benchmarking Intensity of RRC

(a) Index Group

(b) Index Style

(c) Fund Type

These figures plot the evolution of each component of the benchmarking intensity of RRC stock over time.
Figure (a) plots index groups, each including Blend, Value and Growth indices. Figure (b) plots Russell and
CRSP style components. Figure (c) plots the contribution of active and passive funds.

Since the benchmarking intensity measure is built using the AUM of both active and
passive funds, there is a variation coming from the relative importance of these two fund types
as depicted in Panel (c) of Figure 3. The BMI of RRC is dominated by the benchmarking
demand from active funds, which changes in 2018 as the stock exits the S&P 500 universe.
This illustrates another important contribution of BMI – unlike passive ownership, a measure
of institutional demand used in the extant literature – the BMI accounts for the inelastic
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demand of active funds as well.
Table 1 documents descriptive statistics for BMI in our sample. S&P 500 stocks have

the highest average BMI, while the BMI of almost all Russell 2000 stocks is below the sample
average. The reported statistics also highlight the increasing heterogeneity of benchmarks
for the U.S. equities: the average number of benchmarks increased from 7 to 10 and the
benchmark Herfindahl-Hirschman index went down from 1100 to 740. Together, value and
growth indices are at least as important as blend indices, contributing on average almost
60% to BMI. Furthermore, active funds contribute 83% to the BMI over the full sample
period, even though their share declined to an average of 65% in the recent 5 years.

Table 1: Properties of benchmarking intensity

By time period By benchmark

Full
sample

1998-
2000

2001-
2006

2007-
2012

2013-
2018

S&P
500

Russell
1000

Russell
2000

Russell
MidCap

Russell
Value

Indexes

Russell
Growth
Indexes

Average BMI, bps 3.2 3.3 3.3 3.4 2.9 16.2 9.0 0.5 3.4 3.2 3.6
St. dev. of BMI, bps 12.4 15.5 13.8 12.0 10.3 27.7 20.9 0.5 3.1 11.6 13.9
Minimum BMI, bps 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
Maximum BMI, bps 439.4 439.4 439.4 356.3 308.3 439.4 439.4 4.8 37.3 439.4 439.4

Average no. of benchmarks 9.5 7.5 9.0 9.9 10.4 9.6 11.0 9.5 11.5 10.5 10.6
Average benchmark HHI 969 1103 1077 1064 736 5224 2749 138 2184 1080 989

Average contribution of indices, %:
- S&P 500 55.5 59.3 58.9 57.6 48.3 55.5 55.7 43.3 49.6 55.7 54.8
- S&P 400 20.1 21.5 20.2 18.7 21.5 23.0 14.0 23.0 20.5 19.5

- Russell 1000 24.1 36.4 26.6 22.0 18.7 19.3 24.1 16.9 23.8 25.1 22.8
- Russell 2000 80.6 76.2 81.9 85.8 75.2 49.9 80.6 81.7 79.4

- Russell MidCap 28.8 24.5 29.8 33.3 24.9 20.8 28.8 27.9 28.8 26.3 32.1
- CRSP Large and Mid 8.2 8.2 6.5 8.2 6.6 10.7 8.2 8.1

- CRSP Small 11.5 11.5 9.8 15.0 10.2 15.0 11.8 11.2

Average contribution of styles, %:
- blend 42.9 31.5 37.6 43.3 51.6 56.8 38.8 43.4 33.7 47.2 45.3
- value 26.4 25.6 26.3 29.1 24.2 21.5 28.9 25.8 31.1 30.0 18.5

- growth 30.7 42.9 36.1 27.6 24.3 21.7 32.3 30.7 35.2 22.8 36.2

Average contribution of fund types, %:
- active 83.0 96.6 93.7 89.1 65.4 79.3 81.9 88.8 82.7 86.1 87.1

- passive (index and ETFs) 17.0 3.4 6.3 10.9 34.6 20.7 18.1 11.2 17.3 13.9 12.9

This table reports the descriptive statistics for benchmarking intensity. Columns ‘By time period’ show statistics for the respective period. Columns
‘By benchmark’ show statistics for stocks that belong to the respective benchmark. BMI statistics (average, standard deviation, minimum, and
maximum) are in basis points. Contribution is in percentage points. Contribution of indices is average of the ratios of BMI coming from the AUM
benchmarked to an index to total BMI of the stock. Contribution of indices is across index styles, e.g., line for the Russell 1000 includes blend,
value, and growth. Average number of benchmarks is for a stock. Benchmark HHI is a Herfindahl-Hirschman index computed using benchmark
AUM shares (scaled by 10000, so that index below 1500 indicates an unconcentrated industry). Averages are simple arithmetic means across
stock-years.

3.2 Dataset

The main sample is a yearly panel of stocks which were the Russell 3000 constituents
in 1998-2018. The main three pillars of data are historical benchmark weights, mutual fund
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holdings, and stock characteristics.
In contrast to the previous studies, the dataset is granular with respect to benchmark

information. It includes primary prospectus benchmarks scraped directly from historical fund
prospectuses available on the website of the U.S. Securities and Exchange Commission12 and
augmented with a Morningstar snapshot. The scraping procedure and its validation are
described in detail in Section A.1 in the Appendix. We obtain benchmark constituent data
from the following sources. All the constituent weights for 22 Russell benchmark indices
are from FTSE Russell (London Stock Exchange Group). The Russell indexes include (all
total return in USD): Russell 1000/2000/2500/3000/3000E/Top 200/Mid Cap/Small Cap
Completeness as well as their Growth and Value counterparts. Constituent weights for the
S&P 500 TR USD and S&P 400 MidCap TR USD are from Morningstar and available
from September 1989 and September 2001, respectively, to October 2015. We construct
constituent weights for S&P 500 before September 1989 and after October 2015 manually
from constituent lists and prices available through CRSP. We generate the S&P 400 weights
from holdings of index funds (Dreyfus and iShares).13 Weights for the CRSP US indexes
are accessed via Morningstar and are available from 2012. These indices include (all total
return in USD): Total Market, Large Cap, Mid Cap, Small Cap as well as their Growth and
Value counterparts.

Our benchmark data has two advantages to prior research. First, the benchmark
information is a dynamic panel encompassing benchmark changes.14 Therefore, it accurately
reflects the benchmark used by funds at any point in time. Secondly, we obtain Russell
index data from FTSE Russell directly: our dataset includes proprietary total market values
(capitalization) as of the rank day in May and provisional constituent lists available before
the reconstitution day in June.

In fund rebalancing analyses, we use holdings available in the CRSP Mutual Fund
Database (CRSP, June 2010 - December 2018) and Thomson Reuters S12 (TRS12, March
1980 - December 2018). Our main source is TRS12 and we use CRSP to add funds for
which data is not available in TRS12. Moreover, CRSP is used to validate the net assets of
the funds and pull various fund-level characteristics, such as returns, expense ratios, equity
percentage, and others. We merge the databases using MFLINKS following steps described
in Section A.2 in the Appendix. We follow several data validation procedures and impose
12Follow https://www.sec.gov/edgar/searchedgar/mutualsearch.html
13Since the S&P 400 index is relatively small, these weights do not contribute much to the analysis. We do
not include the S&P 600 index because its share is even smaller and the holdings-based weights are not of
sufficient quality.

14See Appendix, in which we show that our scraping procedure picked up such important benchmark changes
as Vanguard’s move from the MSCI to CRSP indexes in 2013.
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typical mutual fund filters, which are outlined in the Appendix as well (Section A.4).
We use several databases of ownership data. Mutual-fund ownership share for any

stock is computed as the percentage of shares held by funds of a certain type in the total
number of shares outstanding for the stock (using TRS12 and CRSP as above).

We classify funds into active and passive based on the index_fund_flag in CRSP
and by screening fund names. All ETFs in our sample are classified as passive. A fund is
classified as an ETF if its et_flag in CRSP is non-empty or it has exchange-traded or etf
in its name. We manually resolve and exclude exceptions when the same portfolio has share
classes of both active and passive funds. Detailed steps as well as the textual rules we deploy
for the screening are listed in Section A.6 of the Appendix.

We use daily fund returns from CRSP and benchmark returns from Morningstar in
order to compute tracking errors (net).

Stock data comes from standard sources. We take daily returns, prices, adjustment
factors, and bid and ask prices from CRSP.15 Market, risk-free rate, and factor returns are
from Ken French’s Database. All fundamental accounting data comes from Compustat. We
use CRSP-Compustat linking table and take into account release dates to make sure that
the variables are available to the public by the rank date in May.

We report the descriptive statistics of the main calculated variables used in analysis
in Table 10 in the Appendix.

3.3 Evidence From Russell Indices Reconstitution

Our goal is to test the relationship between two stock-level variables: long-run returns
and the benchmarking intensity. We exploit the cutoff between the Russell 1000 and 2000
indexes, which separates stocks that are very similar in size and other characteristics but
differ significantly in terms of their benchmarking intensities. The close-to-random index
assignment into the Russell 1000 and 2000 indexes serves as a source of (conditionally)
exogenous variation in the benchmarking intensity. In other words, we use predicted index
membership as an instrument for the benchmarking intensity.

3.3.1 The Russell Index Cutoff

Russell indexes undergo a yearly reconstitution at the end of June. The reconstitution
is a two-step process: assigning a stock to an index and determining the weight of the stock
in that index.
15Returns are adjusted for delisting in the standard way.
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The first step is solely based on the ranking of all eligible securities by their total
market capitalization on the rank day in May. For most of the years in our sample, the
rank day falls on the last trading day in May16. Russell uses its broadest Russell 3000E
index as the universe of eligible securities together with newly admitted stocks17. Ranks
are computed based on the proprietary measure of the total market capitalization of eligible
securities. This proprietary measure has been made available to us by Russell1819 and hence
we are able to replicate the assignment rule very closely.20

In the second step, each stock in the index is assigned a weight based on its float-
adjusted market capitalization. To define the adjustment, Russell uses proprietary float
factors, which we can infer from total and float-adjusted market capitalization. These factors
do not affect index assignment but they explain some variation in the benchmarking intensity
due to their direct relationship with index weights: all else equal, stocks will have lower index
weight if the float adjustment is larger, and hence lower BMI.

Before 2007, a firm would be assigned to the Russell 2000 index if and only if its total
market value rank falls between 1000 and 3000. Since the assignment is based on ranks, firms
cannot manipulate it.21 Moreover, an idiosyncratic shock to the market value on the rank
date can bring the stock to the other side of the cutoff. Hence, the assignment is as good as
random. Panels (a) and (b) of Figure 4 plot index weights and benchmarking intensities of
stocks on the rank day (May 31st) in 2006. All stocks to the right of 1000th rank cutoff in
May are assigned to the Russell 2000 in June. Because of the discontinuity in index weights
at the cutoff, our benchmarking intensity measure also has a discontinuity at the cutoff.

In order to reduce the turnover between indices, FTSE Russell introduced a ‘banding’
policy in 2007. According to the new rule, a stock is assigned to the Russell 2000 index if
and only if:

• it was in the Russell 2000 in the previous year and its total market value rank in May
falls between the left cutoff (1000− c1) and 300022

• it was in the Russell 1000 and its total market value rank in May falls between the
16Exceptions are recent years, when the rank days were: 05/27/2016, 05/12/2017, and 05/11/2018.
17See the details on the methodology in the official and publicly available guide.
18We match this measure to the May Russell 3000E constituent lists as well as the preliminary constituent
lists from June in order to arrive at the universe of eligible securities. The preliminary lists have also been
provided by Russell.

19We performed our analysis with the market value measure constructed from CRSP and Compustat as in
Chang, Hong, and Liskovich (2014) as well. This measure delivers qualitatively identical main results.

20For comparability with other papers, we include a Table 8 in the Appendix.
21Typically, bunching is formally tested for with McCrary (2008) test but since the assignment variable is a
rank, which is relative to other stocks, bunching is not possible.

22The rule is similar for stocks moving to the Russell 2000 from below, i.e., around 3000 rank. We are
omitting it here for brevity.
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Figure 4: Discontinuities in Index Weights and BMI before and after 2006

(a) Index weights upon reconstitution in 2006 (b) Benchmarking intensity in 1998-2006

(c) Index weights upon reconstitution in 2012 (d) Benchmarking intensity in 2007-2018

This figure plots index weights and benchmarking intensity against the total market value rank on the rank
day in May. Index weights are a snapshot on the reconstitution date in 2006 (June 30th) and 2012 (June
29th). Benchmarking intensity is averaged for constituents of each index across bins of 10 stocks and over
the relevant period. Russell 1000 Group includes the Russell 1000 and Russell MidCap (blend, value, and
growth). Russell 2000 Group includes the Russell 2000 (blend, value, and growth).

right cutoff (1000 + c2) and 3000.

The band, that is, the range of ranks between (1000 − c1) and (1000 + c2), is still based
on a mechanical rule but it changes each year with the distribution of firm sizes around
the cutoff.23 Because of banding, the turnover between indices went down significantly, as
intended.24 We list the number of additions and deletions per year in Appendix, Table 7.

Because of this new assignment procedure, there is a market value region in which
both Russell 1000 and Russell 2000 stocks are present. Panel (c) of Figure 4 plots the index
23Specifically, it is a 5% band around the cumulated market cap of the stock ranked 1000 in Russell 3000E
universe on the rank date.

24Russell’s analysis is available online: https://www.ftserussell.com/blogs/russell-2000-recon-banding-
results-lower-turnover.
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weights around the cutoffs on the rank day (May 31st) in 2012. In that year, the band is
between ranks 823 and 1243. The discontinuity is still apparent: Russell 2000 stocks (in
grey) have higher index weights. BMI mirrors the new pattern of the weights: the plot for
Russell 2000 stocks lies above that for the Russell 1000 (Panel (d) of Figure 4).

In contrast with the literature, which typically accounts only for the Russell 1000
(blend) and Russell 2000 (blend), we will consider all nine indices on both sides of the cutoff.
These indices include the Russell 1000 (blend, value, and growth) and Russell MidCap (blend,
value, and growth) to the left of the cutoff and the Russell 2000 (blend, value, and growth)
to the right of it.25 Style funds (i.e., value and growth) have historically had a larger market
share on the Russell 1000 side of the cutoff, while blend funds have been more important
on the Russell 2000 side. Moreover, we include funds benchmarked to the Russell MidCap
– an index which spans stocks smaller than rank 200 within the Russell 1000. It assigns a
higher weight to the stocks near the cutoff than the Russell 1000 index because it excludes
its 200 largest constituents. Market share of funds benchmarked to the Russell MidCap in
our sample is almost as high as that of all Russell 2000 funds (Figure 1 in the Introduction).

3.3.2 Identification approach

Our main goal is to test the relationship between benchmarking intensity (BMI) and
long-run returns, identified by our theory. For that, we need exogenous variation in BMI.
The Russell cutoff provides a convenient setup. Given the random assignment of stocks
around the cutoff on the rank day in May, index membership in June is a valid instrument
for BMI. Stocks in the neighborhood of the cutoff share similar properties as an idiosyncratic
market value shock on the rank day can put them to one or the other side of the cutoff.

Were we able to observe the exact running variable (the total market value rank
used by Russell), we would be able to deploy a sharp regression discontinuity design (RDD).
Even though the measure we received from Russell replicates index assignment very closely,
it is not error-free. We show this formally with Table 8 in the Appendix. Imperfect fit
indicates that we do not have a sharp rule even though the resulting prediction significantly
outperforms those in the existing studies.26

Hence, a fuzzy RDD fits our setup better as it allows for noise in the treatment status
around the cutoff and we can assume conditional exogeneity of the instrument for BMI. In
a fuzzy RDD setup, it is common practice to use 2SLS to estimate the treatment effect (Lee
and Lemieux (2010) and Hahn, Todd, and Klaauw (2001)). In the first stage, the treatment
25This set does not include Russell indexes that do not exhibit discontinuity in weights near the 1000/2000
cutoff. These are, for example, Russell 3000, Russell 2500, and Russell Small Cap Completeness.

26To be precise, 34 (4) additions and 16 (10) deletions are misclassified across years before 2007 (after).
These numbers are before we apply filters.
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dummy (Russell membership) is regressed on the predicted treatment and running variable
(rank in May) controls. In the second stage, the outcome variable of interest is regressed
on the predicted treatment, with the same controls. Since our goal is to instrument BMI,
not just index membership, we add an intermediate stage, in which we regress BMI on the
predicted treatment. In the last stage, we will hence use the predicted BMI to estimate the
coefficient of interest. We perform our analysis for additions and deletions samples separately.
If the usual IV assumptions are satisfied, it allows us to estimate the causal effect of BMI
on long-run returns.27

We use the following stock-level three-stage specification to estimate β0:

DR2000
it = α0τit +

∑
n

αnRV
n
it + δ′0X̄it + ε0t (5)

BMIit = γ0D̂
R2000
it +

∑
n

γnRV
n
it + δ′1X̄it + ε1t (6)

Yi t+h = β0B̂MI it +
∑
n

βnRV
n
it + δ′2X̄it + ε2t (7)

In the above specification, τit is 1 when stock i is on the correct side of the cutoff on the rank
day in May of year t, DR2000 is 1 when stock i is in the Russell 2000 on the reconstitution
day in June of year t. Yi t+h is an average long-run return of stock i from September of
year t over the investment horizon h. Specifically, we consider the 12-, 24-, 36-, 48-, and
60-month excess returns, which are not risk-adjusted. We also consider periodic returns, i.e.,
the average of 0-12, 12-24, 36-48, and 48-60 months. Variables with hats, D̂R2000

it and B̂MI it,
are the fitted values from the preceding stage, (5) and (6), respectively. RV is the logarithm
of total market value, i.e., the running variable as of May provided by Russell. The main
specification will only include RV but following the practice in the literature, we explore
robustness to polynomials of RV up to order n. X̄ is a vector of other controls that include:
5-year monthly rolling βCAPM computed using the CRSP total market value-weighted index,
Russell float factor (proprietary liquidity measure affecting index weight), 1-year monthly
rolling average bid-ask percentage spread, and stock return over year t− 1.28

27In unreported analysis, we compare our results to that of a 2SLS procedure, which excludes the prediction
step for the index dummy. The results are almost identical, which supports the identification strategy in
Appel, Gormley, and Keim (2016) and Appel, Gormley, and Keim (2019b).

28Typically, a valid RD does not require covariate adjustment (Lee and Lemieux (2010)). However, we choose
a wider band of 300 stocks for our baseline specification and report results with and without covariates for
consistency with the model. Our theoretical prediction for the expected return (4) highlights that stocks
may have different fundamental exposure through βi – so we add βCAP M . We include the float factor and
bid-ask spread to address the liquidity hypothesis for index effect. Past return is included because we see
that it is imbalanced for the treated and control samples in the covariate tests, currently unreported, and
it may affect long-run returns through momentum. We document covariate-free estimation results for the
reduced form specification in the Appendix.
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We perform estimation separately for additions and deletions. That is, we first esti-
mate specifications (5)-(7) only for stocks that belonged to the Russell 1000 in the previous
year. In this case, DR2000 distinguishes stocks that got added to the Russell 2000 (treated)
from stocks that stayed in the Russell 1000 (control). Similarly, we run the test for the sam-
ple of Russell 2000 stocks only and compare stocks that stayed in the Russell 2000 (treated)
with stocks that got moved to the Russell 1000 (control). This is consistent with Chang,
Hong, and Liskovich (2014).

Our dependent variable spans horizons from 12 months to 5 years. There is some
ambiguity about what the long run is in the literature. The IPO performance literature
(following Ritter (1991)) typically defines it as three years. The long-run reversal literature
(started by De Bondt and Thaler (1985)) uses horizons from 18 months to five years. In our
case, an additional problem is posed by flippers, i.e., stocks that switch from one benchmark
to the other during the horizon that we are considering. Our model requires the stock’s BMI
to remain largely unchanged for the expected return result to play out as predicted. We
comment on flippers further in Section 3.4.3.

We use a local linear regression appoach, i.e., our samples are restricted to the neigh-
borhood of the cutoff (rectangular kernel).29 Our default bandwidth is 300 stocks around
the cutoff and we discuss robustness with respect to this choice variable in Section 3.4.2.

For the period up to 2006, the cutoff rank around which we center the analysis is
1000. For each year starting from 2007, we compute the left and right cutoffs based on the
Russell methodology. Market value levels for the cutoffs we compute are reported in Table
7 in the Appendix, we almost fully match historical values reported by Russell.30

3.3.3 Instrument Strength

In this section we show that both first and second stage instruments in our specifica-
tion are strong and relevant.

As was already discussed in the previous section, index membership is well-instrumented
by the assignment prediction dummy τ . Table 9 in the Appendix explicitly documents the
estimation results for specification (5).

Predicted index membership is a valid instrument for benchmarking intensity. Results
of the second stage regression of the benchmarking intensity on Russell 2000 membership and
controls are presented in Table 2. Russell 2000 membership is associated with a considerable
increase in the benchmarking intensity: the estimates range between 0.017 and 0.061. This
29In an unreported analysis, we experiment with triangular kernels and get similar results.
30Published on the website: https://www.ftserussell.com/research-insights/russell-reconstitution/market-
capitalization-ranges.
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represents a large change as the sample standard deviation of BMI within each index around
the cutoff is 0.05 (Table 10 in the Appendix). High F-statistics support the relevance of our
instrument.31

Table 2: Second stage regression results

Benchmarking intensity

1998-2006 sample 2007-2018 sample 1998-2006 sample 2007-2018 sample
Additions Deletions Additions Deletions Additions Deletions Additions Deletions

D̂R2000
it 0.033∗∗∗ 0.027∗∗∗ 0.017∗∗∗ 0.030∗∗∗ 0.035*** 0.037*** 0.037*** 0.061***

(12.58) (12.78) (7.19) (12.19) (9.18) (11.05) (9.93) (11.61)

Band width 300 100
Running variable (logMV ) Yes Yes
Other controls (X̄) Yes No

Observations 2035 2438 1230 1955 649 947 354 635
F-statistic 244 194 110 182 51 62 49 72
Adjusted R2, % 43 46 47 54 13 15 28 22

This table reports the results of the second stage regression (6) for stocks in the pre-banding (1998-2006) and the post-banding
(2007-2018) samples. The dependent variable is the normalized benchmarking intensity of stock i as of September in year t, BMIit.
The key independent variable, D̂R2000

it , is the Russell 2000 index membership dummy predicted in the first stage. We include only
stocks that were in the Russell 1000 (additions) or Russell 2000 (deletions) in the previous year. Both discontinuities are positive as
the treated are the firms that remained in the Russell 2000. Band width is 300 or 100 stocks around the relevant cutoffs (rectangular
kernel). Other controls (X̄) include a float factor control, a 5-year monthly rolling stock beta computed using the CRSP total market
value-weighted index, a 1-year monthly rolling average bid-ask percentage spread, and stock’s return over year t − 1. t-statistics
based on HAC-robust standard errors with clusters at a stock level are in parentheses. Significance levels are marked as: ∗p<0.05;
∗∗p<0.01; ∗∗∗p<0.001.

An interesting insight from the second stage regression is the asymmetry of the cutoffs
after 2007. Looking at the specification with a narrower band, prior to the introduction of
banding, Russell 2000 membership explained around 0.035 standard deviations difference
in the intensity between stocks on different sides of the cutoff. After 2007, this number
increased to 0.06 around the left cutoff (for deletions) and remained the same around the
right cutoff (for additions). This observation mirrors the relative distance between red and
grey lines in Panel (d) of Figure 4: the distance is larger for the left cutoff, i.e., for the stock
ranked around 825, as opposed to than the right cutoff, i.e., the stock ranked around 1250.

3.3.4 BMI and Long-Run Returns

We now present the results of the third stage regression. This stage tests whether a
higher benchmarking intensity leads to lower returns in the long run. Specifically, we use
B̂MI it, the benchmarking intensity instrumented with stock index membership, to show
that stocks with a higher intensity in year t significantly underperform up to year t+ 5.
31Based on critical levels in Stock and Yogo (2002).
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Results of estimating the third stage regression in the full sample period (1998-2018)
are documented in Table 3. As the coefficient on BMI is significantly negative, stocks with
higher benchmarking intensities have lower returns in the future. The effect persists for up
to 5 years into the future for additions to the Russell 2000 and 2 years for deletions from
it.32

The magnitude of this effect is economically significant. In order to interpret the
magnitude for an average added or deleted stock in our sample, we need to take into account
the second stage coefficient or refer to the reduced form regressions. The reduced form
regression results are included in Tables 16 and 17 in the Appendix. In the 1998-2006 sample
period, addition to the Russell 2000 results in between 60bps and 150bps lower return per
month33 while deletion from it leads to a 40bps-140bps higher return per month. After 2007,
the magnitudes decrease: addition to the Russell 2000 results in between 70bps and 100bps
lower return while deletion leads to a 50-70bps higher return.

Consistent with the model, this analysis shows that an increase in the size of the
preferred habitat has a long-lasting34 effect on stock returns. In other words, inelastic demand
from the benchmarked institutions does indeed lower the expected returns of the stocks. This
result can also be interpreted as a negative long-term return of a long-short portfolio that
buys stocks with high BMI and sells stocks with low BMI.35

It is striking that despite the predicted change in BMI being higher after 2007, the
effect on returns is lower and even insignificant in some specifications. Before the intro-
duction of banding, the effect is symmetric and strong for up to 5 years following index
reconstitutions.36 After 2007, the effect for deletions is smaller in magnitude and the effect
for additions lasts for 24 months only. After 2013, the effect is short-lived in both samples
and is weaker for deletions.

We identify several reasons why we see a weaker relationship between BMI and long-
32Even though it might seem from Panel A that most of the effect is concentrated in the first 12 months
after index reconstitution, the negative relationship is long-term. To confirm this, we report Panel B in
Table 3, which uses average returns over a future period as the dependent variable. It shows that the
returns are lowest in the 0-12 months period, and they are significantly lower for the periods between 12
and 24, 24 and 36 as well as 36 and 48 months. Second, we show in the Appendix that the effect is almost
evenly negative for the full five-year horizon in the 1998-2006 sample. We explain why the introduction of
banding by Russell from 2007 onwards weakens cutoffs-based tests in Section 4.4.

33As discussed earlier, the magnitudes depend on whether we include or exclude flippers so we report a
range. Moreover, note that all our results are relative to the control group.

34Permanent, as long as the stock stays in the benchmark.
35To our knowledge, while the literature has argued that the index effect lasts for over two weeks/months, no
one has documented a long-run (up to 5 years) effect of index inclusion on stock returns. This is probably
because this effect is hard to tease out by studying index (most commonly, the S&P 500) inclusions and
using the market portfolio as a control group. In our quasi-experiment, the control group consists of stocks
around the Russell cutoff, which are more similar to treated stocks.

36Results for sub-samples are in Table 11 in the Appendix.
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run returns in the latter part of the sample. Firstly, with the introduction of banding,
incentives to align closely with the benchmark changed for funds holding stocks around
the cutoff: they became stronger for the left cutoff and weaker for the right. As we show
in Section 4 below, funds benchmarked to the Russell 1000 and Russell MidCap are more
likely to rebalance additions to their benchmarks. In the same section, we explain why these
observations are consistent with the industry-wide practice of optimized sampling. Secondly,
a range of Vanguard passive funds has switched to CRSP indexes in 2012. These indices
have a cutoff which overlaps with the Russell cutoff. We discuss both in detail in Section 4.

3.3.5 BMI and Index Effect

In this section, we show that a higher benchmarking intensity change leads to the
larger price pressure (short-term return) upon an index event. This corresponds to Pre-
diction 2 of our model. It is a natural result since we use predicted index membership as
an instrument for BMI. This is not a new result. It has been documented for the Russell
1000/2000 index cutoff in Chang, Hong, and Liskovich (2014). But our suggestion that the
size of the index effect can be linked to a stock’s BMI and our explanation for why the result
is weaker in the latter part of their sample are novel.

For consistency with Section 3.3.2, we estimate the following specification:

∆BMIit = γ0τit +
∑
n

γnRV
n
it + δ′1X̄it + ε1t

RetJuneit = β0∆̂BMI it +
∑
n

βnRV
n
it + δ′2X̄it + ε2t (8)

In the above specification, τit is 1 when stock i is on the correct side of the cutoff on the
rank day in May of year t. RetJuneit is the excess return of stock i in June of year t (as in
Chang, Hong, and Liskovich), winsorized at 1%. ∆BMIit is a difference between the BMI
of stock i in May of year t and its deflated BMI in June of the same year. Deflated BMI is
computed using index AUM shares in June but weights as of May; that is, it accounts for
the new index membership of stock i but not its return in June. We deflate BMI because
otherwise the actual June index weights will include the (post-announcement) price pressure
and exhibit a positive relationship with June returns.37 RV is the logarithm of total market
value, the running variable as of May provided by Russell. X̄ is a vector of other controls
that we include for consistency, they are the same as in our long-run analysis.38 We estimate
37Results are robust to alternative, shorter, deflators and to using May’s AUM shares.
385-year monthly rolling βCAP M computed using the CRSP total market value-weighted index, Russell
float factor (proprietary liquidity measure affecting index weight), 1-year monthly rolling average bid-ask
percentage spread, stock’s return over year t− 1.
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this specification for additions and deletions separately.

Table 4: Change in BMI and price pressure in June

Excess return in June

Additions Deletions Additions Deletions

∆̂BMI it 0.080*** 0.015** 0.045** 0.024**
(5.89) (2.20) (2.52) (2.76)

Band width 300 100
Running variable (logMV ) Yes Yes
Other controls, X̄ Yes No
Observations 3632 4915 1089 1677
Adjusted R2, % 17 16 2 2

First-stage coefficient 0.39*** 0.59*** 0.41*** 0.60***
(31.09) (34.67) (17.10) (21.38)

First-stage F-statistic 521 652 292 457
First-stage R2, % 26 38 36 37

This table reports the results of specification (8) for stocks in the full sample (1998-2018). The
dependent variable is the winsorized return of stock i in June in year t. The key independent
variable, ∆̂BMIit, is the predicted change in BMI between June and May deflated to May prices.
Other controls X̄ are our baseline controls from Table 3. We include only stocks that were in
Russell 1000 (additions) or Russell 2000 (deletions) in the previous year. Band width is 300
or 100 stocks around the cutoffs (rectangular kernel). t-statistics based on HAC-robust standard
errors with clusters at a stock level are in parentheses. Significance levels are marked as: ∗p<0.10;
∗∗p<0.05; ∗∗∗p<0.01.

Estimation results for both stages are presented in Table 4. We see a significant and
positive relationship between the BMI change and price pressure upon reconstitution. Con-
sistent with our model’s Prediction 2, price pressure will be highest for stocks experiencing
the largest increase in BMI, all else equal. Therefore, in contrast with the existing literature
which looks at the average index effect, our analysis suggests that the size of index effect
can be linked to the stock’s BMI.

This result is in line with the findings of Chang, Hong, and Liskovich. Both additions
and deletions experience price pressure upon an index event. Moreover, our price pressure
estimates based on index dummy instead of ∆BMI lie within the ranges documented in the
Internet Appendix to their paper.

3.3.6 Remarks on Exclusion Restriction

Recent literature has similarly exploited the Russell 1000/2000 cutoff to document
a number of corporate implications of institutional ownership (e.g., Appel, Gormley, and
Keim (2019b) and references therein), some in conflict with each other. In this subsection,
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we discuss whether the findings of this literature may provide an alternative explanation
for our findings and/or challenge our identification strategy. We comment on the exclusion
restriction, ownership discontinuities, and the direction of long-run returns.

Table 5 lists the most common empirical approaches to exploit the Russell cutoff
used in the literature. This table highlights that the pioneering work of Chang, Hong,
and Liskovich (2014), sparked active research in this area, with many papers exploiting
the cutoff to answer a variety of questions, primarily in corporate finance. The biggest
challenge to identification in this body of work is that the true ranking variable is not
available to researchers,39 which led some researchers to use fuzzy RDD and some to question
the conditional exogeneity assumption when a simple IV approach is used (Wei and Young
(2017)). One point the literature now agrees on is that that the June weights cannot be
used for assignment. Some of the early papers used the June weights and it is not known
whether the results are robust to using end-of-May weights instead.

Table 5: A summary of empirical methods exploiting the Russell 1000/2000 cutoff

Methodology Sample Instrument Example

Fuzzy RDD 1996-2012 Index dummy Chang, Hong, and Liskovich (2014)
Fuzzy RDD with IV (3SLS) 1998-2006 ETF ownership Ben-David, Franzoni, and Moussawi (2018)
IV approach with logMV 1998-2006 Passive IO Appel, Gormley, and Keim (2016)
IV with logMV and band controls 2008-2014 Benchmarked passive IO Appel, Gormley, and Keim (2019b)
IV with ranks 1991-2006 Total IO Crane, Michenaud, and Weston (2016)
IV for additions/deletions 1993-2010 Change in the passive IO Schmidt and Fahlenbrach (2017)
Cohort difference-in-differences 2004-2017 Heath, Macciocchi, Michaely, and Ringgenberg (2018)

This table shows empirical approaches most frequently used to exploit the cutoff between the Russell 1000 and Russell 2000 indices. RDD
stands for regression discontinuity design, IO – institutional ownership, 3SLS - three-stage least squares, IV – instrumental variable, logMV
– log market value (running variable). The layout is borrowed from Glossner (2018).

Our analysis poses no conflict with the documented evidence. First, a discontinuity in
BMI is not conflicting with any of the documented discontinuities. That is, discontinuities in
total institutional ownership (IO), passive IO, benchmarked IO, and ETF ownership are im-
plicitly assumed in our measure. They are also assumed to be time-varying since the amount
of capital linked to indices varies and new indices emerge. Therefore, if BMI is a compre-
hensive measure, we expect to see discontinuities in all aforementioned variables: whether
the discontinuity is identified in a particular sample depends on the distribution of assets
between benchmarks. Hence, it does not imply a violation of the exclusion restriction in our
analysis. Second, we address the debate on identification in the literature in the following
way. We use a proprietary running variable provided by Russell which minimizes the concern
of the violation of conditional exogeneity of the Russell index dummy.40 Moreover, we use
39Most papers reconstruct it using CRSP data. Ben-David, Franzoni, and Moussawi (2018) propose a new
method to construct the variable for a higher assignment accuracy from public data.

40As we discussed above, the assignment prediction quality is very high.
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a prediction step to orthogonalize any remaining measurement error (similar to Ben-David,
Franzoni, and Moussawi (2018)).

We see no threat to our results coming from the findings of other papers either.
First, the majority of documented results are short-term: they are measured in the year
following the reconstitution, while our main focus is on long-term returns.41 Second, and
more importantly, most of the findings document improvements to future cash flows for
stocks to the right of the cutoff, which would imply that future realized returns should be
larger for those stocks, while we find the opposite.

In Table 15 in the Appendix, we perform reduced-form tests for the fundamental
variables associated with cash flows average over the three years following the reconstitu-
tion.42 We generally find little evidence that any of them is significantly different for the
treated and control groups. However, one variable that stands out is stock repurchases (be-
fore 2007); they increase for additions to the Russell 2000. Repurchases are a part of the
payout to shareholders. Prior research has argued that firms that enter the Russell 2000 are
better monitored than firms in the Russell 1000 (Crane, Michenaud, and Weston (2016)),
which leads to increased cash flows to the shareholders and, therefore, higher realized re-
turns. In contrast, we find that the realized returns are lower. Hence, the significant effect
on repurchases cannot explain our findings.

In an unreported analysis, we check if the risk factor loadings change with Russell
index membership. We find no robust changes in either Fama-French-Carhart, Fama-French
5-factor, or Pástor and Stambaugh (2003) loadings.43 In some specifications, SMB loading
increases upon addition to the Russell 2000. Since this change should be associated with
higher long-run returns, it could only prevent us from finding the result.

We discuss further alternative explanations of our results in the robustness section
(Section 3.4.5).
41For example, Schmidt and Fahlenbrach (2017) focus on acquisitions in one year after an index switch.
Since we find a longer-term effect, our results are at best complementary.

42Apart from the reported characteristics, we inspected all characteristics summarized in Lewellen (2015).
We find some support for lower asset growth of stocks added to (or not deleted from) the Russell 2000
but that would only bias us against finding our main result. Furthermore, we observe higher turnover of
these stocks so we link it to rebalancing of benchmarked funds (see Section 4). However, stock liquidity, as
measured by ILLIQ of Amihud (2002) and bid-ask spread, deteriorates. In the litrature, this is associated
with higher expected returns, which is opposite to what we find.

43This analysis involves estimating our reduced form specification with the future loadings on the left-hand
side and controlling for lagged (pre-event) loadings. All loadings are 5-year computed from monthly rolling
regressions of stock excess returns on factor returns available from Ken French’s website or WRDS, with
a minimum of 2 years of data required for estimation.
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3.4 Robustness

3.4.1 Time Fixed Effects and Double-Clustering

Our baseline specification does not include year fixed effects, even though our goal is
to compare the returns in the cross-section. We exclude them mainly because our analysis
separates additions and deletions samples and there is an insufficient number of treated firms
by year within them (as shown in Appendix, Table 7).

At the same time, for the year fixed effects to play a role in our experiment, there has
to be a differential impact on the treated and control groups. That is, since we are comparing
firms that switched indices with the firms that stayed, the estimate will be biased without
year fixed effects only if the treated group is affected in a systematically different way than
the control group. We discuss below that the covariates are balanced, which indicates that
this concern is not very strong in our sample.44

For illustration only, we widen the band to report the results of estimating a reduced
form specification with year fixed effects in Table 16 in the Appendix. The significance is
weaker but the sign is negative for all horizons, in line with our main specification. The
reduced form for our specification is (7) with τit (predicted assignment) used instead of
B̂MI it.

The reported t-statistics are based on standard errors clustered by stock. Double-
clustering does increase the standard errors but most of the results remain significant at 5%.
Since the prediction of the model is that the sign of β0 is negative, our inference is based on
a one-sided test with Ha : β0 < 0. Of course, the one-sided tests do not change the reported
t-statistics.

3.4.2 Bandwidth Selection

Our default bandwidth is 300 stocks around the cutoff. We also report the main
estimation results with the bandwidth of 100 in Table 12 in the Appendix.

We check the MSE-optimal bandwidths as well (first suggested in Imbens and Kalya-
naraman (2011)). The symmetric (asymmetric) MSE-optimal bandwidths are typically
slightly below (above) the width of 300 which we use in the main results. They also vary
slightly by return horizon. With these bands, the statistical significance of β0 is weaker but
the sign remains consistent with the reported results.
44Nevertheless, because our theory suggests the role for differential fundamental loadings (βi in (2.1)), we
report the estimation results for CAPM abnormal long-run returns in the Appendix (Table 13). It alleviates
the concern that our results are driven by differential market exposure of the control and treated groups.
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3.4.3 Flippers

We considered excluding stocks that moved between the Russell 1000 and 2000 indexes
more than once in five years – the so-called ‘flippers’. Our theoretical predictions concern
stocks that joined a set of indices and stayed in them until the end of the investment horizon.
Our results are considerably stronger, both statistically and in magnitude, if we drop stocks
that moved between the Russell 1000 and 2000 indexes more than once in the relevant
horizon.45 Economically, our theory would predict that the BMI of such flippers would change
when they move index again and hence distort the long-run returns upwards. Moreover,
fund managers, especially those who can take on more tracking error risk, could be able to
identify stocks that move back and avoid trading them in the first index reconstitution to
avoid transaction costs.

From the econometrics perspective, however, excluding flippers introduces a selection
bias. A stock which was added to the Russell 2000 index has to appreciate in value to come
back to the Russell 1000 the next year. Therefore, by excluding flippers, we naturally exclude
stocks with the most positive return realizations, which biases our β0 estimate downward.

We believe that an analysis of any long-run variable using the Russell cutoff has to
weigh these potential biases. At least, it has to take into account future index membership
changes. In our case, the main reported results do not exclude flippers from the sample and
hence represent the upper bound on β0 coefficient.

We also use other filters. Consistent with the literature (e.g., Schmidt and Fahlen-
brach (2017)), we exclude stocks that move more than 500 ranks in one year. Our results are
robust to this filter but we prefer to keep it in place to ensure the comparability of stocks.

Since we study long-run returns, stocks that leave the sample within a certain horizon
will be dropped from the respective regression46. All returns we use are adjusted for delisting.

3.4.4 Covariate Balance

In this section, we show that the other observed characteristics are smooth for firms
around the cutoff. That is, we test for the differences in fundamental firm characteristics
determined prior to the Russell reconstitution. We do it by estimating specification (7) with
index dummy DR2000 instead of BMI (baseline controls are included) separately for additions
and deletions samples. We ensure that the data we use is released to the public by the rank
day in May.

Results are in Table 14 in the Appendix. None of the imbalances is robustly sig-
45Reduced form regression results are reported in Tables 16 and 17.
46Results remain qualitatively unchanged if we keep the available returns of these stocks (incomplete year).
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nificant. Moreover, we cannot think of an economic story why, say, repurchases should be
significant for additions but not for deletions and enter with different signs before and after
2007. Nonetheless, in unreported analyses, we control for each of the imbalances and find
no change to our results.

Apart from the reported characteristics, we considered additional characteristics shown
to predict returns for U.S. stocks in the cross-section (summarized in Lewellen (2015)) as
well as factor loadings (CAPM, Fama-French-Carhart, Fama-French 5, Pastor-Stambaugh,
and standalone benchmark betas, e.g. with respect to the Russell 1000) and liquidity mea-
sures (ILLIQ of Amihud (2002), Return-to-Turnover of Florackis, Gregoriou, and Kostakis
(2011), and effective spread of Abdi and Ranaldo (2017)). The only measures that appear
imbalanced are the bid-ask spread, stock volatility, past year stock return, and CAPM beta.
We, therefore, include them as controls in our baseline specification, dropping volatility as
it turns out to be insignificant and have no effect on our estimates.

3.4.5 Alternative Explanations

One of the alternative explanations for our results is that returns of firms that have
transitioned to the Russell 2000 are lower because these firms have fallen on hard times
and their cash flows are deteriorating. If this momentum continues, it is not surprising to
see that the firms added to the Russell 2000 have lower future returns relative to firms that
stayed in the Russell 1000. Our baseline controls (specifically, past returns) and the reported
covariate tests are designed to alleviate this concern. Nonetheless, we took further steps to
ensure this explanation is ruled out.

In addition to the covariate imbalance tests, we have checked explicitly whether any
of the firms moving to the Russell 2000 are in financial distress. In our dataset, treated
and control firms have similar Altman Z-scores and the scores do not change upon index
reconstitution. Moreover, excluding firms classified by Altman Z-score as being ‘in distress’
or ‘in the grey zone’ does not change either the significance or magnitude of our results. We
have also experimented with excluding firms that had a rapid deterioration in their market
value rank prior to reconstitution. While our baseline analysis excludes jumps of 500 ranks,
we have tried excluding firms that lost even as little as 100 ranks. Our results remained
qualitatively unchanged, albeit the magnitude of the effect was smaller.
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4 Benchmarking Intensity and Trends in Institutional
Ownership

Starting from Gompers and Metrick (2001), empirical literature documented a range
of effects of institutional trading and ownership for stock prices. A recent strand of literature
looks into the effects of ownership on corporate outcomes. There has been no research,
however, on the benchmarking-induced ownership.

Benchmarking intensity reflects the incentives elicited by the contracts of asset man-
agers, both active and passive. In this section, we show that both investor types have a
considerable fraction of holdings concentrated in their benchmarks and that they rebalance
stocks relevant for their benchmarks around the Russell cutoffs. That is, we document a
heterogeneity of investor habitat dictated by their benchmarks.

We also show that the change in Russell’s reconstitution methodology in 2007 (i.e.,
the introduction of banding) has altered funds’ incentives to rebalance. It mostly affected
the buying of deletions from the Russell 2000. In the light of this change, we discuss how
portfolio construction based on optimized sampling trades off benchmarking incentives with
transaction costs.

Finally, we describe other index groups, CRSP and S&P, and how their reconstitutions
may affect studies on the Russell cutoff.

4.1 Benchmarks as Funds’ Habitat

As Robert Stambaugh points out in his AFA Presidential Address (Stambaugh (2014)),
U.S. mutual funds’ tracking errors have been going down. In our dataset, this trend is dras-
tic. A simple average tracking error of active funds went down from 7% per annum in the
early 2000s to below 4% in 2010s. For passive funds, these numbers have been below 2% and
closer to 0.5%, respectively. Given that the share of passive funds grew significantly over the
past two decades,47 the overall industry tracking error is at its historical low.

Exploiting the granularity of our dataset, we also compute the percentage of fund
AUM invested in its benchmark stocks and the number of benchmark stocks held. Over our
sample period (1998-2018), the AUM share in the benchmark stocks has risen from 75% to
82% for active funds. The number of benchmark stocks they hold has also risen from 60%
to 80% of the total number of stocks in their portfolios. Both figures have consistently been
close to 100% for passive funds.
47The assets of stock index mutual funds and ETFs now match that of active funds, according
to: https://www.bloomberg.com/news/articles/2019-09-11/passive-u-s-equity-funds-eclipse-active-in-epic-
industry-shift.
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These trends suggest that benchmarks define funds’ preferred habitats.48 In the
following section, we document that funds actually rebalance stocks added to or deleted
from their benchmarks.

4.2 Net Purchases of Index Additions and Deletions

Earlier studies documented that Russell index funds and ETFs buy additions to and
sell deletions from their benchmarks. We argue that this list is incomplete and that active
managers engage in the same behavior but detecting it requires granular data on their
benchmarks.

In order to see which funds rebalance additions and deletions, we estimate the fol-
lowing specification at a stock level:

DIndex
it = α0τ

Index
it +

∑
n

αnRV
n
it +Owni,j,t−1 + δ′0X̄it + ε1t

Owni,j,t = β0D̂
Index
it +

∑
n

βnRV
n
it +Owni,j,t−1 + δ′2X̄it + ε2t

In the above specification, τ Indexit is 1 when stock i is on the correct side of the cutoff on
the rank day in May of year t for membership in the respective index, the Russell 1000
or Russell 2000. Owni,j,t is the percentage of outstanding shares of stock i owned by fund
group j at the end of September of year t. The funds are grouped by benchmark and type
(active/passive). We perform analysis on September holdings data because: (1) it allows
for delayed rebalancing after June reconstitution49, (2) it is based on quarterly holdings50,
and (3) it is in line with most of the previous studies (e.g., Appel, Gormley, and Keim
(2016)). RV is the logarithm of total market value, the running variable as of the rank
day in May provided by Russell. X̄ is a vector of other controls from our long-run analysis
that include: 5-year monthly rolling βCAPM computed using CRSP VW index, Russell float
factor (proprietary liquidity measure affecting index weight), 1-year monthly rolling average
Bid-Ask percentage spread, and stock return over year t− 1.51

As in our earlier analysis, we use a 2SLS estimator. It allows us to identify the effect of
48All our analysis is conditional on the benchmark in manager’s contract. Our model does not take a stand
on how end investors pick the benchmark or fund to invest in. Possible rational explanations include
the need to hedge endowment shocks of a particular type or to hedge displacement risk. Behavioral
explanations include psychological foundations for why investors prefer growth over value, over-reaction,
and extrapolation of past returns.

49In undocumented analysis, we see that after 2007 a considerable fraction of rebalancing of additions and
deletions happens in July.

50These holding records are more complete because their filing is mandatory on a quarterly basis.
51This specification does not include year and industry (SIC-1) fixed effects for the same reason of insufficient
variation within additions and deletions samples. Results are similar if we include them.
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addition to or deletion from an index and alleviate a concern that an omitted variable might
be driving both membership in the index and the level of ownership of funds benchmarked
to that index. We perform this analysis on additions and deletions separately, at an index
level, and distinguish between active and passive funds benchmarked to that index. For
example, we estimate a separate regression for the ownership share of the active Russell
1000 funds in stocks that were in the Russell 1000 on the rank day in May. In this example,
the interpretation of β0 on DR2000 is the change in their ownership share due to the stock’s
addition to the Russell 2000 index (and its deletion from the Russell 1000 index group – i.e.,
the Russell 1000 blend, Russell MidCap blend, and their value and growth counterparts.).

Table 6 documents that both passive and active funds rebalance additions and dele-
tions. Consistent with the literature, we find highly significant stock ownership changes for
passive funds in line with their benchmarks. For example, passive funds benchmarked to the
Russell 2000 increase their ownership in stocks added to the Russell 2000 by 103bps. These
funds also sell deleted stocks in similar proportions. At the same time, we see that active
funds benchmarked to the Russell 2000 also sell deletions, decreasing their ownership share
by 100bps.

Table 6 reveals that active funds engage in rebalancing additions and deletions even
more after banding was introduced in 2007. Active funds benchmarked to the Russell 1000
and Russell MidCap increase their ownership shares in stocks deleted from the Russell 2000
by 42bps and 108bps respectively. They also sell additions to the Russell 2000 (23bps
and 55bps, respectively). It is important to note the asymmetry in active funds’ trading of
additions and deletions after 2007. We will elaborate on this point when discussing optimized
sampling in Section 4.4 below.

Table 6 includes CRSP benchmarks after 2013 as well. Those regressions feature dum-
mies for CRSP US Large and CRSP US Small membership (not instrumented), DCRSP−Large

it

and DCRSP−Small
it , respectively. CRSP Large and Mid Cap funds (counterparts of the Russell

1000 and Russell MidCap) buy members of the CRSP Large and Mid Cap indices and sell
members of the CRSP Small Cap indices. CRSP Small Cap funds do the opposite. The
sheer size of these funds makes them large investors in the market cap region around the
Russell cutoff. Furthermore, there is a potential conflict between the Russell and CRSP
cutoffs, which we explain in Section 4.5 below.
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Table 6: Rebalancing of additions and deletions, by benchmark and fund type

Summary of separate regressions on additions and deletions

Ownership by Benchmark Group and Fund Type, %

Stocks ranked < 1000 Stocks ranked > 1000

Benchmark Russell 1000 Russell MidCap S&P 500 CRSP LM Russell 2000 CRSP S
Fund type Active Passive Active Passive Active Passive Passive Active Passive Passive

Panel A: Pre-banding sample (1998-2006)

D̂R1000
it 0.10*** 0.04*** 0.13 0.02*** 0.06 -0.01 -0.67*** -0.26***

(3.59) (21.16) (1.33) (17.39) (0.67) (-1.54) (-4.45) (-12.05)
D̂R2000
it 0.08 -0.04*** -0.16 -0.02*** -0.07 0.01 0.14 0.48***

(1.36) (-14.76) (-1.27) (-14.16) (-0.55) (0.24) (0.99) (21.60)

Number of funds (2006) 224 10 133 3 343 37 254 12

Panel B: Post-banding sample (2007-2018)

D̂R1000
it 0.41*** 0.28*** 1.08*** 0.34*** 0.65*** 0.00 0.02 -1.54*** -2.48*** 0.07

(8.11) (36.51) (7.90) (43.60) (4.87) (0.46) (1.85) (-9.06) (-55.31) (0.83)
D̂R2000
it -0.23*** -0.27*** -0.55*** -0.33*** 0.06 -0.18*** 0.04** -0.33 2.37*** -0.03

(-3.00) (-22.29) (-3.29) (-30.89) (0.40) (-2.87) (3.03) (-1.38) (32.49) (-0.31)
DCRSP−Large
it 3.17*** -1.84***

(114.33) (-7.62)
DCRSP−Small
it -0.73*** 1.69***

(-3.87) (12.36)

Number of funds (2013) 326 23 181 8 378 67 6 305 22 3

Panel C: Full sample (1998-2018)

D̂R1000
it 0.23*** 0.10*** 0.68*** 0.12*** 0.38*** -0.01 -1.00*** -1.39***

(9.77) (21.68) (10.25) (21.48) (5.70) (-1.23) (-10.93) (-38.49)
D̂R2000
it -0.03 -0.10*** -0.37*** -0.12*** -0.05 -0.03 0.01 1.03***

(-0.75) (-16.19) (-3.91) (-16.69) (-0.53) (-1.18) (0.10) (21.90)

This table reports the discontinuities in rebalancing for the pre- and post-banding sample periods. Estimation is performed at investor group
level (by benchmark and fund type). The coefficients come from separate regressions: on stocks that were in the Russell 1000 (additions) or in
the Russell 2000 (deletions) in the previous year. Band width is 500 stocks around the cutoffs (rectangular kernel). The dependent variables are
ownership shares in stock i as of September in year t of the respective investor group. CRSP funds are only available from 2013. All regressions
include one-year lagged ownership, year and industry fixed effects, polynomial of log total market value of order 1 and all other controls in X̄.
t-statistics based on HAC-robust standard errors with clusters at a stock level are in parentheses. Significance levels are marked as: ∗p<0.10;
∗∗p<0.05; ∗∗∗p<0.01.
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4.3 Value and Growth Indices

Disaggregating investor groups by style (value or growth), we document additional
discontinuities by benchmark. When a stock moves from the Russell 1000 to Russell 2000,
it also enters the Russell 2000 Value and Growth indices.52 In an analysis similar to the
previous section, we show that active value funds rebalance value stocks and growth funds
rebalance growth stocks.

In order to perform a discontinuity test as in earlier sections, we would need to control
for variables that define assignment to value and growth indices. This assignment is not as
easy for researchers to predict as that to market cap indices. Using a proprietary database
of I/B/E/S forecasts, B/P, and sales growth, Russell runs a custom probability algorithm
to define a share of stock’s market cap as value or growth. Therefore, we cannot ensure
the exogeneity of style dummies, e.g., DR2000V alue and DR2000Growth, and our results in this
section should be viewed as suggestive.

As Table 18 in the Appendix reports, both active and passive funds rebalance in line
with their benchmarks.53 For example, passive Russell MidCap Growth funds buy additions
to the Russell 1000 Growth universe and sell additions to Russell 2000 universe, and more
so for additions to the Russell 2000 Growth universe.

Similarly to the previous section, active funds rebalance deletions after 2007 the most.
For example, Russell 1000 Value funds buy additions to the Russell 1000 Value, Russell
MidCap Growth funds – to the Russell 1000 Growth, while active Russell 2000 funds sell
deletions.

Again, in the post-banding sample (after 2006), we detect fewer discontinuities for
active funds around the right Russell 1000/2000 cutoff: they do not trade additions to the
Russell 2000 at a similar scale. This emphasizes the asymmetry we documented above for the
analysis at a market cap index level. In the following section, we offer a potential explanation
for this phenomenon.
52Russell methodology is such that most of the stocks belong to both indices, i.e., some part of market value
is assigned to value and some – to growth. In other words, a stock is rarely a pure value or growth. Russell
has special indices for pure style stocks that are rather small in AUM.

53In these regressions, a coefficient on a style dummy should be summed with the coefficient on market cap
dummy, e.g., a coefficient on DR2000 V alue should be summed with DR2000 to get a change in ownership for
stocks that entered the Russell 2000 Value. Market cap dummy can be interpreted as the change for the
pure style opposite the style dummy, or Growth in our example, because it shows the rebalancing when
DR2000 V alue = 0.
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4.4 Optimized Sampling

In this section, we propose an explanation for the asymmetry in funds’ net purchases
of index additions and deletions following the introduction of banding in 2007. We have
documented that funds benchmarked to the Russell 1000 and Russell MidCap are more
likely to rebalance additions to their benchmarks than deletions and they seem to do so
more robustly than before 2007. These observations are consistent with the industry-wide
practice of optimized sampling.

Optimized sampling is a portfolio construction technique in which ex ante tracking
error is balanced with expected transaction costs. In our model, the tracking error concern
of the manager is driven by the relative performance component Rj − Bj in her contract.
The higher the relative performance sensitivity b, the lower the tracking error the fund (i.e.,
the manager demands more shares of the benchmark and fewer shares of the mean-variance
portfolio). Our model abstracts from transaction costs, whereas in practice, transaction costs
are an important consideration. Not buying an asset in the benchmark saves on transaction
costs but increases the manager’s tracking error relative to the benchmark. Optimized
sampling addresses this trade-off.54 Figure 8 in the Appendix illustrates how funds describe
this portfolio construction approach in their prospectuses.

Optimized sampling directly interferes with the incentives to hold the benchmark
portfolio. In the presence of transaction costs, funds no longer hold benchmark securities
proportionally to benchmark weights. Rather, they typically hold the largest stocks with
benchmark weights, completely omit the smallest and some mid-range stocks, and overweigh
most of the mid-range stocks. An example of portfolio with benchmark weights and weights
under optimized sampling is illustrated in Figure 5.

In an unreported numerical analysis, we modify the fund manager’s optimization
problem by introducing fixed transaction costs for trading each stock and adding a con-
straint that the fund’s tracking error cannot exceed a realistic upper bound. Solving such
a problem for the Russell 1000, Russell MidCap, and Russell 2000 yields portfolio weights
that underweight the lowest-cap stocks in each index while overweighting the mid-cap stocks.
This, in turn, changes how the weight discontinuities align with the cutoff after 2007.55 The
right pane of Figure 6 plots benchmarking intensity computed using such weights. There
is essentially no discountinuity in BMI at the left cutoff, while the right cutoff continues to
54In practice, portfolio construction software typically allows additionally for further constraints like match-
ing dividend yield of the benchmark, its B/M, industry exposures, etc.

55The effect of optimized sampling on the cutoff before 2007 is opposite: since the smallest stocks in either
the Russell MidCap or Russell 1000 are not purchased due to higher transaction costs and the largest
Russell 2000 stocks are purchased close to index weights, the discontinuity is larger than the one implied
by benchmark weights.
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Figure 5: Benchmark portfolio weights vs. optimized sampling weights

This figure illustrates the differences between a pure benchmark portfolio (left) and a portfolio constructed
using optimized sampling (right). Horizontal bars represent stocks and their heights represent weights of
these stocks in the respective portfolios.

display a discountinity.

Figure 6: Benchmarking intensity in 2007-2018 without and with optimized sampling

(a) BMI with no sampling (b) BMI with sampling

This figure plots average BMI in 2007-2018 based on benchmark weights (a) and BMI based on portfolio
weights using optimized sampling (b) against total market value rank in May. Red (lower) plot indicates
Russell 1000 constituents and grey (upper) plot – Russell 2000.

Results on the rebalancing of deletions after 2007 in Table 6 are in line with this
illustration. When a stock gets added to the Russell 1000 (and therefore to Russell MidCap),
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it has a rank of around 800, while the ranks of existing index constituents range up to 1300.
This addition now contributes to funds’ tracking errors significantly more than smaller stocks
at the bottom of the index and it is not as expensive to trade. In other words, funds
benchmarked to the Russell 1000 and Russell MidCap are now more likely to purchase this
addition. At the same time, additions to the Russell 2000 obtain a rank of around 1300.
Because the existing constituents now have ranks starting from 800, the contribution of these
additions to funds’ tracking errors is, on average, lower compared to the pre-banding period.
Even though passive funds benchmarked to the Russell 2000 will still trade these stocks,
active funds are less likely to do so. Therefore, the incentives to hold stocks around the
cutoffs changed with the introduction of banding, which must contribute to the performance
of BMI in tests of long-run returns.

The change of these incentives provides an alternative explanation to the reduction
of the index effect over time, documented in Chang, Hong, and Liskovich (2014). The
authors hypothesize that the alleviation of limits to arbitrage over time made demand curves
more elastic. We provide a different explanation: the introduction of banding made funds
benchmarked to the Russell 1000 and Russell MidCap participate in index rebalancing almost
at par with Russell 2000 funds. For example, the stocks that are being deleted from the
Russell 2000 and experiencing selling pressure from Russell 2000 funds will also experience
relatively higher buying pressure from Russell 1000/MidCap funds. In other words, we
suggest evening out of the price pressure from buying and selling.

4.5 CRSP Indexes

A range of Vanguard passive funds switched from MSCI to CRSP indexes in 2012.56

The switch concerned 9 funds that invest in stocks around the Russell cutoff. As Figure 1
in Introduction shows, at the time of the switch, these funds’ AUM represented around 7%
of assets in the 75%-95% of market capitalization range (around the cutoff). By 2018, this
share grew to 15%, which is too high a number for researchers to ignore.

CRSP indexes have a different construction and reconstitution methodologies.57 They
do not have a fixed number of constituents and, instead, they include stocks that represent
certain percentages of the US equity market capitalization. Moreover, rebalancing of CRSP
indexes happens quarterly and over a 5-day period, when an index adds a 20%-fraction of the
market value of a newly included stock on each day. The purpose of such a slow transition
56FTSE indices as well, for international funds. Media coverage is available online:
https://www.ft.com/content/fa60b8b0-6655-11e2-919b-00144feab49a.

57Methodology guides are publicly available online: http://www.crsp.org/indexes-pages/crsp-us-equity-
indexes-methodology-guide.
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is to reduce expected rebalancing costs for the end investors.
For index reconstitution, CRSP indexes use banding and ‘pocketing’ methodologies.

The former is similar to Russell’s band between the Russell 1000 and Russell 2000: it implies
that a stock has to move further than the actual market value cutoff to be assigned to
the new index. Pocketing is unique to CRSP indexes and it features partial, or ‘pocketed’,
assignment to an index, in which only 50% of the market value of a stock gets added to the
index once the stock passes the banding cutoff for that index. The next 50% get added if the
stock remains beyond the cutoff until the next reconstitution. Both methodologies ensure
the stability and representativeness of the index constitution.

CRSP indexes have a cutoff which overlaps with Russell’s upper cutoff and may
introduce confounding. Figure 7 illustrates this conflict in 2012. As stocks get reclassified
to the CRSP US Small Cap, their BMI goes up. As former Russell 1000 stocks, these
stocks become a control group in the test we perform on additions to the Russell 2000 index
(provided they move sufficiently close to the lower Russell cutoff). With higher BMI, these
stocks are subject to lower returns, which in turn brings returns of the control sample down
and makes it less likely for our tests to identify the effect. In general, the existence of another
cutoff right at the point of the Russell cutoff may violate the exclusion restriction. In our
case, the restriction is satisfied as long as BMI accounts for the change and still exhibits
discontinuity. Since CRSP reconstitution happens quarterly (and the share of the CRSP
indexes keeps growing), it is more likely that a stock’s BMI will change even if the stock
remains in the neighborhood of the Russell cutoff. We see it as another reason of weaker
results after 2013.

Another index present in the neighborhood of the cutoff is the S&P MidCap 400. It
represents the next 400 most important companies in the US after the S&P 500. This may
suggest that it has a cutoff around stocks with the rank of 900, but this is not quite the
case. The methodology of S&P indices is different to that of Russell and CRSP: constituent
selection is at the discretion of the Index Committee and sector balance is as important
as market capitalization for inclusion.58 Hence, the S&P 400 has a wide span of ranks (in
the Russell rank terms). Instead of occupying ranks 501-900, it ranged from 172 until 2550
across all years in our sample.

58See https://us.spindices.com/documents/methodologies/methodology-sp-us-indices.pdf to access the S&P
methodology publicly available online.
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Figure 7: Overlap Between the CRSP and Russell Cutoffs

This figure depicts the Russell and CRSP cutoffs (band thresholds) effective at the end of June 2012. All
thresholds are expressed in Russell ranks.

5 Conclusion

In this paper, we theoretically derive a measure which reflects the size of the preferred
habitat investors in a stock – benchmarking intensity. Exploiting a discontinuity in the
benchmarking intensity of stocks at the bottom of the Russell 1000 and the top of the
Russell 2000 index, we document that stocks with higher benchmarking intensities have
higher prices and lower expected returns.

Our measure reflects inelastic demand for their benchmarks of both active and pas-
sive funds. According to our preferred habitat view, active funds are not genuinely active
investors. Rather, they simply deviate from their benchmarks to a lesser extent than passive
funds. In our sample, active funds own large fractions of shares outstanding, higher than
passive funds, and that is why they contribute significantly to the aggregate inelastic demand
for benchmark stocks. On average, a large part of active funds’ holdings is in benchmark
stocks, both in terms of the number of stocks and AUM share.

Studying the rebalancing around the Russell cutoff, we document that both active
and passive managers buy additions to their benchmarks and sell deletions. Our results also
highlight that active managers participate in this rebalancing more after the introduction of
banding. We explain why this is consistent with the optimized sampling practice.

We also discuss how the growth of the CRSP indexes may affect research design
based on the Russell cutoff. The CRSP indexes have several cutoffs, which could potentially
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be exploited in research due to the mechanical reconstitution rules. This may inform the
growing literature using the identification approach based on index cutoffs.
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A Appendix

A.1 Construction of the Historical Benchmarks Data

We manually assemble a dataset of historical mutual funds benchmarks from the
following sources:

1. Snapshot of benchmarks (′primary_prospectus_benchmark field) in Morningstar as
of September 2018.

2. Database of historical fund prospectuses available on the website of the U.S. Securities
and Exchange Commission (SEC)59.

3. SEC Mutual Fund Prospectus Risk/Return Summary60 data sets (MFRR). Bench-
marks are mentioned in the annual return summary published in prospectuses.

We use the crsp_fundno-CIK mapping from CRSP to link CIK, SEC identifiers,
back to crsp_fundno. To map CRSP and Morningstar, we mostly follow the procedure in
Pástor, Stambaugh, and Taylor (2015), details are below in Section A.3.

A.1.1 Scraping the EDGAR and Building Text-Based Series

Mutual funds are required to reqularly submit filings to the SEC. The SEC’s EDGAR
system stores filings in electronic archives since 1994. Even though the SEC Rule S7-10-
9761 required funds to report their benchmark (or a ’reference broad market index’) in
prospectuses from December 1, 1999, some funds voluntarily did so prior to that (Sensoy
(2009)). Reporting of manager compensation contracts was required by the SEC Rule S7-
12-0462 starting in October, 2004. Therefore, the procedure discussed below will cover the
history of filings for any particular fund back to 1998.

The filings that include information on fund benchmark and manager compensation
are: N-1A/485 (registration statement including a prospectus), 497K (summary prospectus),
497 (fund definitive materials) and 497J (certification of no change in definitive materials).
All of these can be accessed via package ’edgarWebR’ available in R.63 Since the holdings
59Follow SEC’s mutual fund search page: https://www.sec.gov/edgar/searchedgar/mutualsearch.html
60Follow the MFRR page: https://www.sec.gov/dera/data/mutual-fund-prospectus-risk-return-summary-
data-sets.

61Available on: https://www.sec.gov/rules/final/33-7512r.htm.
62Available on https://www.sec.gov/rules/final/33-8458.htm.
63Description is available on: https://cran.r-project.org/web/packages/edgarWebR/index.html.
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data set is already linked to CRSP fund identifiers (fundno), we will use all CIK codes64

available in the mapping file crsp_cik_map. For each CIK, we retrieve a list of all historical
filings (485 and 497/497K/497J forms) using company_filings() function. Then we parse the
filings into raw text format using parse_filing() function.

Having obtained the filings for each CIK and each filing date, we re-organize the
data set into a panel: quarterly text files for each fund. To do so, we assign observations
with a 497J form a ’no-change’ tag. Moreover, after looking at the text data, we assign a
’no-change’ tag to 497 forms with no reference to benchmark or manager compensation.65

Before extracting the data, each of the filings is tokenized (we work with both tok-
enized text and string formats) and de-capitilized, punctuation and certain stop words are
removed.66 All these steps are done using NLTK67 module in Python. Afterwards, we clas-
sify all 485 and 497K documents as prospectuses, while we have to look into the content of
497 filings to classify them into prospectuses or statements of additional information (SAI).
Typically, funds specify the type of the document in the header, we therefore search for the
exact match (’prospectus’ or ’statement of additional information’) in the first 100 characters
of the filing.

There are a few challenges we face when extracting the fund benchmark from prospec-
tus text. Even though all funds are required to disclose the benchmark, they tend to do it
in a very different manner. Some funds explicitly say that the performance can be evalu-
ated against a particular market index, some only report the index performance below the
required performance tables (as implicit benchmark). If referring to the benchmark in the
text, funds do not use standardized language: some may say ’benchmark’, some ’market
index’ or ’reference index’ and some may omit the term and only use a phrase similar to
’performance is measured against’. Moreover, some funds may define a mixture of indices as
their benchmark, e.g., "60% Russell 1000, 40% Russell 2000". Therefore, we are faced with
the task of extracting information from unstructured text.

Finally, in some cases we need to first isolate the text to extract the benchmark
name from. Fund families may choose to submit one prospectus for many funds. Within
one prospectus document, many funds can either share the same section or each fund can
64The Central Index Key (CIK) is used as the main identifier of the filing entities on the SEC’s EDGAR
and available per fund, fund series, and fund company. We first use series CIK as benchmarks differ at
this level, then we use company CIK to fill in any missing observations.

65Since fund prospectus is a legal document and fund clientele supposedly depends on it, we se that prospec-
tuses are relatively ’sticky’ and hence the time series for most of the funds looks like ’prospectus’ definition
at early date and then at most 1-2 changes for the fund history.

66Numerical data and special characters cannot be removed though as they are included in benchmark names.
Moreover, we retain negation.

67Official page is: http://www.nltk.org/.
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have a separate section. We therefore extract the fund-relevant part of prospectus whenever
possible (typically in the second case only). To do so, we search for fund name and fund
ticker in the text. Most commonly, the relevant section starts with a ticker/name and has it
repeated on each page throughout the section. We hence extract the part of the text with
the highest density of tickers/fund names.

When extracting benchmarks from (isolated) text, we use a set of rules that maximizes
the chance of the algorithm picking up the benchmark correctly. The set of rules includes
but is not limited to:

• Search for a benchmark provider name from the list (de-capitilized already): {s&p,
russell, crsp, msci, dj, dow jones, nasdaq, ftse, schwab, barclays, wilshire, bridgeway,
guggenheim, calvert, kaizen, lipper, redwood, w.e. donoghue, essential treuters, barra,
ice bofaml, bbgbarc, cboe}.68 If a benchmark from the list is found, retrieve subsequent
40 characters to extract the full benchmark name. Match the full names using the list
from Morningstar (for example, russell 1000 value tr usd).

• If several matches are established, we record the number of matches and each bench-
mark name (with subsequent characters, as above).

• We also search for words from the list (context words): {index, benchmark, reference,
performance, relative, return, measure, evaluate, assess, calculate}. We use these words
in two ways. Firstly, if a benchmark name match is established, we check if any of
these context words is present within 100 characters around the name. Secondly, if no
match is established, we record pairwise distance in letters between benchmark names
and context words and return the pair with minimum distance. This second approach
is based on string format of the text and required if the match was not established due
to imprecision in tokenization.

We manually clean the extracted data to remove typos and map it to full benchmark
names. In the resulting sample of quarter-fund-benchmarks, we manually verify all funds
that got matched with several benchmarks or that had a benchmark change. Subsequently,
we validate a random sample of funds through manual analysis of prospectus’ text. We
also compare the benchmarks as of September 2018 with a snapshot we obtained from
Morningstar database and manually resolve any mismatch. Furthermore, we compare a
time series we get with a series available for a small sample of funds in MFRR.
68This list has been compiled using the Morningstar benchmark snapshot. It is survivorship-bias free.
According to Morningstar, the first three providers take over 90% of the market and the first five - around
98%.
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As expected, prospectuses are relatively sticky. In the entire sample over 1998-2018,
we observe 1,208 changes at a share class level (around 300 at master fund level). The largest
benchmark change in terms of tracking assets for passive funds in Vanguard’s move from
MSCI to CRSP indexes in 2012 and 2013. For active funds, it is T. Rowe Price’s change
from the S&P 500 to Russell 1000 Value and Growth indexes in 2018.

A.2 CRSP and Thomson Reuters S12 Merge Procedure

We use Mutual Fund Links (MFLINKS) to merge CRSP and TRS12 similar to the
procedure described in Doshi, Elkamhi, and Simutin (2015).

Firstly, we prepare TRS12 holdings:
- keep last holdings report for each fund in a given month,
- match WFICN number from MFLINKS to fundno, rdate, and fdate in TRS12 file,
- when there are duplicate reports for the same date, keep the fund with largest assets,
- pull CRSP stock files and adjust reported number of shares by the correct adjustment
factor - as of rdate.

Then, we prepare CRSP holdings:
- clean the data based on portnomap to ensure that only one portno is valid for a particular
date for any fund (remove overlaps in the data due to mergers),
- match WFICN number from MFlinks to crsp_fundno,
- clean overlaps in wficn-portno mapping,
- keep the last report for every month.

Finally, we stack the two parts and remove duplicate entries from CRSP (at a fund
level).

A.3 CRSP and Morningstar Merge Procedure

The merge procedure is a slight modification of Pástor, Stambaugh, and Taylor
(2015).69

A.4 Asset Validation

TNA and holdigns data are generally validated by MFLINKS (only funds with suf-
ficient match quality are linked). However, we additionally validate the TNA in order to
ensure better match with the holdings. In case of CRSP, we use the sum of assets across
share classes and weigh share class level data such as equity percentage by the fraction of
69Details are available upon request.

46



total assets this share class represents. Because TRS12 reports only equity and CRSP re-
ports all assets, we multiply the most recent equity percentage by CRSP assets. We use the
following for validation:
- compare the total dollar sum of holdings in the merged file with the assets reported by
TRS12 and CRSP and call the difference ’unexplained’,
- if difference between TRS12 and CRSP is smaller than 1%, we use CRSP,
- if CRSP has lower unexplained or TRS12 does not report assets, we use CRSP and other-
wise TRS12.

A.5 Filtering

In the final sample, we keep only funds that:
- have fund-quarter entries where I validated the assets at 20% precision;
- are either active or passive domestic equity funds that did not change its style or objective
over their history (see details below in Section A.6);
- have an average common equity percentage between 50 and 120%;
- have more than USD 1 million in assets.

A.6 Active and Passive Domestic Equity Funds

We follow the major steps of the procedure described in Doshi, Elkamhi, and Simutin
(2015) to filter out active domestic equity funds and augment it to identify passive funds
better.

We use crsp_obj_cd (CRSP objective code) to identify ‘equity’, ‘domestic’, ‘cap-
based or style’ and exclude ‘hedged’ and ‘short’ and remove those funds that changed their
objectives. I also only keep funds with ’ioc’ variable in TRS12 file (investment objective) not
in (1,5,6,7). Active funds are identified as those without ‘Index_fund_flag′ or with ‘B′

(index-based funds) and without ‘et_flag′. I also exclude funds that have a range of words
in their names, as per the list below.

List of n-grams to exclude from active funds names (all in lower case).

1. Generic and index provider names: index, indx, ‘ idx ‘, s&p, ‘ sp ‘ (with spaces),
nasdaq, msci, crsp, ftse, barclays, ‘ dj ‘, ‘ dow ‘, jones, russell, ‘ nyse ‘, wilshire, 400,
500, 600, 1000, 1500, 2000, 2500, 3000, 5000

2. Passive management names: ishares, spdr, trackers, holdrs, powershares, streettracks,
‘ dfa ‘, ‘program’, etf, exchange traded, exchange-traded
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3. Target fund names: target, retirement, pension, 2005, 2010, 2015, 2020, 2025, 2030,
2035, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075

Our sample of passive funds consists of index funds and ETFs available on CRSP.
Index funds are those with ‘index_fund_flag′ of ‘D′ or ‘E ′ and those that include a range
of words in their name:

1. Generic and index provider names: index, indx, ‘ idx ‘, s&p, ‘ sp ‘ (with spaces),
nasdaq, msci, crsp, ftse, barclays, ‘ dj ‘, ‘ dow ‘, jones, russell, ‘ nyse ‘, wilshire, 400,
500, 600, 1000, 1500, 2000, 2500, 3000, 5000

2. Passive management names: ishares, ‘ dfa ‘, ‘program’

ETFs are those with not missing ‘et_flag′ or having ′etf ′, ‘exchange − traded′,
‘exchangetraded′ in their name:

1. Passive management names: spdr, trackers, holdrs, powershares, streettracks, etf, ex-
change traded, exchange-traded

Target funds are those with target years in the name, e.g., ‘2015’ and ‘2075’, or
‘retirement’, ‘target’. Creating a clean sample of target funds potentially requires different
treatment of objective codes (see CRSP Style Guide). Since we only aim to exclude them,
we remove fund with the following n-grams in their names:

1. Target fund names: target, retirement, pension, 2005, 2010, 2015, 2020, 2025, 2030,
2035, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075

We exclude all leverage and inverse funds by identifying the following n-grams in the
names: ′leverage′, ′inverse′, ′2x′, ′1.5x′, ′1.25x′, ′2.5x′, ′3x′, ′4x′.

If we apply the rules above, some of the funds in the sample will include both active
and passive share classes. We clean the resulting sample of funds with share classes of
different type as per the rule: (a) Put ETF shares of index funds as ETFs (passive type
maintained). (b) When missing flag for otherwise index funds and portno is the same, set
to index. (c) If portno/cl_grp are different, exclude.

The remaining funds are further filtered based on the common equity percentage as
discussed in A.5.

48



A.7 Russell Reconstitution

Table 7: Historical Details on Russell 2000 Reconstitution

Russell 1000 Russell 2000
Year Additions Deletions Smallest Smallest w/banding Largest w/banding Largest
1987 38 37 0.4 0.4
1988 22 35 0.3 0.3
1989 21 9 0.4 0.4
1990 47 28 0.3 0.3
1991 56 22 0.4 0.4
1992 55 26 0.5 0.5
1993 63 26 0.6 0.6
1994 66 36 0.7 0.7
1995 48 39 0.8 0.8
1996 65 38 1.0 1.0
1997 62 57 1.1 1.1
1998 57 54 1.4 1.4
1999 59 70 1.4 1.4
2000 50 48 1.6 1.5
2001 86 104 1.4 1.4
2002 78 73 1.3 1.3
2003 43 56 1.2 1.2
2004 49 38 1.6 1.6
2005 61 58 1.8 1.7
2006 49 68 2.0 1.9
2007 5 15 2.5 1.8 3.1 2.5
2008 31 38 2.0 1.4 2.7 2.0
2009 36 39 1.2 0.8 1.7 1.2
2010 14 25 1.7 1.3 2.2 1.7
2011 23 35 2.2 1.6 3.0 2.2
2012 27 32 2.0 1.4 2.6 1.9
2013 27 30 2.5 1.8 3.3 2.5
2014 28 24 3.1 2.2 4.1 3.1
2015 48 20 3.4 2.4 4.3 3.4
2016 48 34 2.9 2.0 3.9 2.9
2017 40 31 3.4 2.3 4.5 3.4
2018 35 48 3.7 2.5 5.0 3.7

This table reports the number of additions to and deletions from Russell 2000. We only report
deletions which moved to Russell 1000, not those that moved down in the ranking. The last for
columns report the market value (in billions USD) of smallest and largest stocks in the indices.
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A.8 Assignment Prediction

Table 8: Quality of the assignment prediction

1998-2006 sample 2007-2018 sample

DRu1000 DRu2000 DRu1000 DRu2000

τi,t 0.82∗∗∗ 0.84∗∗∗ 0.67∗∗∗ 0.68∗∗∗
(35.20) (43.97) (15.59) (21.87)

F-statistic 2,239 3,214 594 1,142
Adjusted R2, % 90 90 82 84
Observations 712 1,022 386 660

This table reports the results of the assignment prediction
regression: Dindex

it = α0l + α1l(Rankit − c) + τit(α0r +
α1r(Rankit− c)) (Chang, Hong, and Liskovich (2014)). Indi-
cator τ is 1 if the stock is on the right side of the cutoff c to
be assigned to the index. We include only stocks that were in
the Russell 1000 (for additions) or Russell 2000 (deletions) in
the previous year. The dependent variables are, respectively:
Russell 2000 membership dummy, DRU2000, and Russell 1000
membership dummy, DRU1000. Bandwidth is 100. t-statistics
based on HAC-robust standard errors with clusters at a firm
level are in parentheses. Significance levels are marked as:
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
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A.9 First Stage Results

Table 9: First stage regression results

DR2000
it : stock ∈ Russell 2000 index

1998-2006 sample 2007-2018 sample 1998-2006 sample 2007-2018 sample
Additions Deletions Additions Deletions Additions Deletions Additions Deletions

τit 0.963∗∗∗ 0.964∗∗∗ 0.964∗∗∗ 0.949∗∗∗ 0.953*** 0.950*** 0.923*** 0.906***
(110.32) (118.41) (98.93) (86.19) (92.37) (81.67) (59.86) (42.82)

Band width 300 100
Running variable (logMV ) Yes No
Observations 2,181 2,652 1,343 2,096 958 657 650 356
F-statistic 30,147 25,953 7,223 14,982 8,532 6,670 3,583 1,834
Adjusted R2, % 95 96 90 91 91 89 82 79

This table reports the results of the first stage regression (5) for stocks in the pre-banding (1998-2006) and the post-banding (2007-
2018) samples. The dependent variable is the dummy for Russell 2000 membership of a stock i as of June in year t. We include only
stocks that were in Russell 1000 (additions) or Russell 2000 (deletions) in the previous year. Band width is 300 or 100 stocks around
the cutoffs (rectangular kernel). t-statistics based on HAC-robust standard errors with clusters at a stock level are in parentheses.
Significance levels are marked as: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.

A.10 Descriptive Statistics

Table 10: Descriptive statistics around the cut-off

Stocks in Russell 1000 Stocks in Russell 2000
Obs. Mean St.Dev. Min Max Obs. Mean St.Dev. Min Max

BMI 5,354 0.11 0.05 0.00 0.68 6,178 0.11 0.05 0.00 0.43

Average long-run excess return, % (winsorized at 1%):
12-month 5,091 1.02 2.67 -11.18 12.28 5,847 1.00 2.71 -11.18 12.28
24-month 4,605 0.94 1.86 -7.11 8.35 5,255 1.00 1.93 -7.11 8.35
36-month 4,149 0.94 1.50 -4.86 6.34 4,706 1.00 1.50 -4.86 6.34
48-month 3,720 0.96 1.26 -3.76 5.51 4,211 0.98 1.28 -3.76 5.51
60-month 3,316 1.00 1.11 -3.04 4.83 3,798 0.99 1.13 -3.04 4.83

Average periodic excess return, % (winsorized at 1%):
0-12 months 5,084 0.58 2.70 -15.04 9.27 5,840 0.56 2.82 -15.04 9.27
12-24 months 4,605 0.21 2.94 -14.26 8.84 5,261 0.30 2.95 -14.25 8.84
24-36 months 4,151 0.20 2.91 -13.39 8.73 4,712 0.31 2.97 -13.39 8.73
36-48 months 3,723 0.36 2.83 -12.73 8.51 4,216 0.23 2.97 -12.73 8.51
48-60 months 3,324 0.38 2.81 -11.98 8.30 3,806 0.38 2.90 -11.98 8.30

Bid-ask spread, % 5,370 0.14 0.14 0.00 2.00 6,200 0.15 0.16 0.00 4.68
βCAPM (winsorized at 1%) 5,104 1.14 0.69 -0.08 3.56 5,876 1.16 0.71 -0.08 3.56
Market value (Russell) 5,419 2663.2 1094.8 826.2 6193.8 6,272 1925.7 870.2 778.9 5043.6
Last-year return, % (winsorized at 1%) 5,255 5.67 35.08 -82.05 246.90 6,117 20.31 44.73 -82.05 246.90

This table reports the descriptive statistics of the main stock-level variables used in the analysis – by index the stock belongs to in the
current year. These statistics are calculated on 300 stocks around the cut-off. All returns are monthly.
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A.11 Third Stage Results Before and After Introduction of Band-
ing

Table 11: Third stage results, by sample subperiod

Long-run excess return
Panel A: Excess returns, average over horizon (months)

Additions to Russell 2000 Deletions from Russell 2000
Horizon (months) 12 24 36 48 60 12 24 36 48 60

Panel A1: Pre-banding (1998-2006)

B̂MIit -0.30*** -0.31*** -0.23*** -0.13*** -0.03 -0.24*** -0.35*** -0.22*** -0.16*** -0.09***
(-4.53) (-5.41) (-5.20) (-3.76) (-0.95) (-3.49) (-6.21) (-5.24) (-4.31) (-2.80)

Observations 1921 1811 1713 1628 1548 2285 2159 2033 1930 1833
Panel A2: Post-banding (2007-2018)

B̂MIit -0.63*** -0.18* -0.01 -0.03 -0.09 -0.14** -0.08** -0.06** -0.06** -0.07***
(-2.62) (-1.39) (-0.09) (-0.28) (-0.77) (-2.10) (-1.95) (-1.71) (-2.03) (-2.68)

Observations 1175 1031 888 752 607 1864 1591 1368 1164 1003
Panel A3: After CRSP switch (2013-2018)

B̂MIit -0.60*** -0.01 0.02 0.01 -0.08 -0.27*** 0.06 0.07 0.05 -0.05
(-3.57) (-0.08) 0.25 (0.15) (-0.73) (-2.46) (0.91) (1.43) (0.94) (-1.14)

Observations 635 508 389 280 160 922 703 515 352 234

Panel B: Excess returns, average in the period (months)

Additions to Russell 2000 Deletions from Russell 2000
Period (months) 0-12 12-24 24-36 36-48 48-60 0-12 12-24 24-36 36-48 48-60

Panel B1: Pre-banding (1998-2006)

B̂MIit -0.25*** -0.34*** -0.38*** -0.01 0.30 -0.13** -0.44*** -0.28*** -0.17** 0.10
(-3.85) (-4.02) (-4.80) (-0.10) (3.37) (-1.92) (-5.51) (-3.32) (-2.07) (1.21)

Observations 1921 1811 1713 1628 1548 2285 2159 2033 1930 1833
Panel B2: Post-banding (2007-2018)

B̂MIit -0.66*** -0.39** -0.30 -0.56** -1.08*** -0.12* -0.10* -0.03 -0.10** -0.10**
(-2.70) (-1.86) (-1.15) (-1.84) (-2.61) (-1.63) (-1.51) (-0.58) (-1.73) (-1.74)

Observations 1175 1031 888 752 607 1864 1591 1368 1164 1003
Panel B3: After CRSP switch (2013-2018)

B̂MIit -0.61*** 0.13 -0.02 -0.01 -0.66** -0.29*** 0.13 0.10 -0.09 -0.35**
(-3.48) (0.64) (-0.09) (-0.04) (-1.76) (-2.47) (1.18) (1.12) (-0.91) (-2.31)

Observations 635 508 389 280 160 922 703 515 352 234

This table reports the results of the third stage regression for the subsamples: 1998-2006 (Panels A1 and B1), 2007-2018 (Panels A2 and B2),
2013-2018 (Panels A3 and B3). The dependent variable in Panel A is an average monthly excess return from September in year t over the respective
horizon. The dependent variable in Panel B is an average monthly return in the respective period, e.g., 12-24 months after reconstitution. We
include only stocks that were in the Russell 1000 (additions) or in the Russell 2000 (deletions) in the previous year. Band width is 300 stocks
around the cutoffs (rectangular kernel). All regressions include the baseline controls: log total market value, a float factor control, a 5-year monthly
rolling βCAPM , a 1-year monthly rolling average Bid-Ask Spread, %, stock’s return over year t−1. t-statistics based on HAC-robust standard errors
with clusters by stock are in parentheses. Significance levels are based on a one-sided test and marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.12 Narrow Band

Table 12: Third stage results, by sample subperiod and with a narrow band
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A.13 Abnormal Returns

Table 13: Third stage results, by sample subperiod

Long-run abnormal return
CAPM abnormal returns, average over horizon (months)

Additions to Russell 2000 Deletions from Russell 2000
Horizon (months) 12 24 36 48 60 12 24 36 48 60

Panel A1: Pre-banding (1998-2006)

B̂MIit -0.20*** -0.18*** -0.09** 0.01 0.06 -0.18*** -0.22*** -0.06* 0.02 0.02
(-2.92) (-3.20) (-1.93) (0.36) (1.52) (-2.81) (-4.10) (-1.48) (0.42) (0.49)

Observations 1921 1811 1713 1628 1548 2285 2159 2033 1930 1833
Panel A2: Post-banding (2007-2018)

B̂MIit -0.80*** -0.24* -0.00 0.07 0.14 -0.18*** -0.05 -0.02 -0.01 -0.00
(-3.13) (-1.60) (-0.02) (0.66) (1.19) (-2.84) (-1.20) (-0.66) (-0.28) (-0.09)

Observations 1175 1031 888 752 607 1864 1591 1368 1164 1003
Market model abnormal returns, average over horizon (months)

Additions to Russell 2000 Deletions from Russell 2000
Horizon (months) 12 24 36 48 60 12 24 36 48 60

Panel B1: Pre-banding (1998-2006)

B̂MIit -0.17*** -0.16*** -0.08** 0.02 0.06 -0.15** -0.24*** -0.07** 0.02 0.03
(-2.54) (-2.91) (-1.95) (0.56) (1.82) (-2.30) (-4.53) (-1.73) (0.65) (0.89)

Observations 1921 1811 1714 1628 1549 2287 2161 2034 1930 1834
Panel B2: Post-banding (2007-2018)

B̂MIit -0.51*** -0.21* 0.00 0.02 0.04 -0.14** -0.06* -0.03 -0.02 -0.02
(-2.60) (-1.58) (0.02) (0.19) (0.38) (-2.30) (-1.32) (-0.95) (-0.68) (-0.67)

Observations 1169 1030 887 752 607 1860 1593 1369 1165 1004

This table reports the results of the third stage regression for the subsamples: 1998-2006 (Panels A1 and B1) and 2007-2018 (Panels
A2 and B2). The dependent variable is an average monthly CAPM or market model abnormal return from September in year t over
the respective horizon. We include only stocks that were in the Russell 1000 (additions) or in the Russell 2000 (deletions) in the
previous year. Band width is 300 stocks around the cutoffs (rectangular kernel). All regressions include the log total market value
and the baseline controls: a float factor, a 5-year monthly rolling βCAPM , a 1-year monthly rolling average Bid-Ask Spread, %,
stock’s return over year t−1. t-statistics based on HAC-robust standard errors with clusters by stock are in parentheses. Significance
levels are based on a one-sided test and marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.14 Covariate Imbalance Tests

Table 14: Covariate imbalance tests
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A.15 Tests on Long-Run Return Drivers

Table 15: Tests on long-run return drivers (financial characteristics)
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A.16 Reduced Form Regressions

Table 16: Reduced form results for 1998-2006

Long-run excess return

Additions to Russell 2000 Deletions from Russell 2000
12-month 24-month 36-month 48-month 60-month 12-month 24-month 36-month 48-month 60-month

Panel A: All stocks, bandwidth is 100, only logMV included
τit -0.009*** -0.008*** -0.006*** -0.003*** -0.001 -0.004* -0.006*** -0.004*** -0.003*** -0.001*

(-3.53) (-4.30) (-3.72) (-2.54) (-0.75) (-1.77) (-3.85) (-3.01) (-2.60) (-1.56)

Adjusted R2, % 1.96 5.94 5.38 3.29 0.30 1.06 4.63 5.91 4.00 0.76
Observations 612 584 558 525 503 888 845 791 744 711

Panel B: Flippers excluded, bandwidth is 100, only logMV included
τit -0.020*** -0.022*** -0.020*** -0.015*** -0.012*** -0.015*** -0.020*** -0.018*** -0.016*** -0.012***

(-7.03) (-9.86) (-10.51) (-8.96) (-7.27) (-6.47) (-10.56) (-11.41) (-10.89) (-7.75)

Adjusted R2, % 10.63 27.03 31.10 27.34 21.95 7.34 21.46 31.60 32.98 22.69
Observations 426 342 292 256 237 554 433 354 299 271

Panel C: All stocks, bandwidth is 300, only logMV included
τit -0.010*** -0.010*** -0.008*** -0.004*** -0.001 -0.005*** -0.009*** -0.006*** -0.004*** -0.002***

(-5.02) (-6.41) (-6.16) (-4.16) (-1.16) (-3.11) (-7.20) (-6.14) (-4.96) (-2.87)

Adjusted R2, % 1.64 4.40 5.59 3.86 1.04 0.43 3.47 3.33 2.24 0.60
Observations 2019 1901 1796 1700 1619 2443 2299 2161 2050 1944

Panel D: All stocks, bandwidth is 300, all controls included (baseline)
τit -0.010*** -0.010*** -0.007*** -0.004*** -0.001 -0.006*** -0.009*** -0.006*** -0.004*** -0.002***

(-4.84) (-6.20) (-5.85) (-4.03) (-0.98) (-3.67) (-7.40) (-5.99) (-4.69) (-2.90)

Adjusted R2, % 4.07 7.92 9.73 8.63 7.44 2.94 6.10 4.50 3.15 2.14
Observations 1921 1811 1713 1628 1548 2285 2159 2033 1930 1833

Panel E: All stocks, bandwidth is 300, all controls and year fixed effects included
τit -0.005** -0.003* -0.002* -0.001 0.000 -0.002 -0.003** -0.000 -0.000 -0.000

(-2.24) (-1.57) (-1.41) (-0.48) (0.38) (-1.10) (-2.09) (-0.46) (-0.08) (-0.60)

Within R2, % 3.29 3.57 2.66 2.58 3.29 0.79 0.34 0.14 0.05 0.02
Observations 1921 1811 1713 1628 1548 2285 2159 2033 1930 1833

Panel F: Flippers excluded, bandwidth is 300, all controls and year fixed effects included
τit -0.019*** -0.019*** -0.017*** -0.013*** -0.011*** -0.017*** -0.018*** -0.014*** -0.012*** -0.010***

(-7.70) (-9.88) (-10.14) (-8.50) (-7.33) (-7.15) (-9.42) (-8.63) (-7.78) (-6.84)

Within R2, % 6.74 12.51 14.80 13.34 12.39 8.14 14.70 14.83 15.25 14.39
Observations 1572 1301 1134 1021 928 1719 1367 1130 969 865

This table reports the results of the reduced form regression for the pre-banding sample period (1998-2006). The dependent variables are excess
long-run returns of stock i from September in year t over the respective horizon. Panel A uses all stocks in the band of 100 around the cutoff,
Panel B uses same band but excludes stocks moving back to the other index in the relevant horizon, Panel C uses all stocks in the band of 300
around the cutoff, Panel D adds all controls to the specification and sample of Panel C (our baseline), Panel E adds year fixed effects, Panel F
adds year fixed effects and excludes stocks moving back to the other index in the relevant horizon. We include only stocks that were in the Russell
1000 (additions) or in the Russell 2000 (deletions) in the previous year. t-statistics based on HAC-robust standard errors with clusters at a stock
level are in parentheses. Significance levels are based on a one-sided test and marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 17: Reduced form results for 2007-2018

Long-run excess return

Additions to Russell 2000 Deletions from Russell 2000
12-month 24-month 36-month 48-month 60-month 12-month 24-month 36-month 48-month 60-month

Panel A: All stocks, bandwidth is 100, only logMV included
τit -0.007* -0.001 0.000 0.003 0.001 -0.001 0.001 0.001 0.001 -0.003

(-1.70) (-0.59) (0.04) (0.66) (0.20) (-0.75) (0.76) (0.90) (0.44) (0.66)

Adjusted R2, % 3.20 3.74 3.35 13.79 14.03 1.38 6.32 1.73 1.93 4.35
Observations 330 290 284 238 150 604 535 524 457 312

Panel B: Flippers excluded, bandwidth is 100, only logMV included
τit -0.007** -0.007*** -0.005** -0.005** -0.009*** -0.008*** -0.009*** -0.008*** -0.011*** -0.010***

(-2.06) (-2.39) (-2.09) (-1.79) (-2.59) (-3.12) (-4.08) (-3.87) (-5.28) (-4.76)

Adjusted R2, % 1.33 4.28 7.00 8.74 13.91 2.08 4.82 5.74 13.89 17.33
Observations 216 164 116 75 53 420 310 233 172 130

Panel C: All stocks, bandwidth is 300, only logMV included
τit -0.009** -0.004** -0.000 -0.001 -0.001 -0.005*** -0.003** -0.001 -0.002** -0.003***

(-2.87) (-1.82) (-0.05) (-0.53) (-0.73) (-2.65) (-1.77) (-1.21) (-1.66) (-2.53)

Adjusted R2, % 4.25 4.79 5.63 11.21 12.75 2.19 2.61 1.49 3.11 4.27
Observations 1275 1120 960 809 649 1973 1690 1456 1237 1059

Panel D: All stocks, bandwidth is 300, all controls included (baseline)
τit -0.010*** -0.003* -0.000 -0.000 -0.001 -0.004** -0.003** -0.002** -0.002** -0.003***

(-2.87) (-1.41) (-0.09) (-0.29) (-0.80) (-2.13) (-1.97) (-1.74) (-2.07) (-2.79)

Adjusted R2, % 4.88 4.92 6.40 11.31 13.66 4.63 4.31 3.36 4.28 6.85
Observations 1175 1031 888 752 607 1865 1592 1369 1165 1004

Panel E: All stocks, bandwidth is 300, all controls and year fixed effects included
τit -0.003 0.001 0.002 0.003 0.001 -0.001 0.001 0.001 0.000 0.000

(-0.85) (0.32) (0.98) (1.37) (0.68) (-0.59) (0.59) (0.32) (0.03) (0.05)

Within R2, % 0.42 0.54 0.19 0.81 1.63 0.62 1.14 0.86 0.98 1.72
Observations 1175 1031 888 752 607 1865 1592 1369 1165 1004

Panel F: Flippers excluded, bandwidth is 300, all controls and year fixed effects included
τit -0.009** -0.008*** -0.006** -0.006** -0.007*** -0.012*** -0.012*** -0.010*** -0.011*** -0.009***

(-2.27) (-2.55) (-2.13) (-2.00) (-2.49) (-4.48) (-5.00) (-4.58) (-5.15) (-4.10)

Within R2, % 2.17 1.28 3.24 1.84 2.65 1.40 3.67 6.63 8.53 8.95
Observations 908 684 519 374 277 1432 1076 829 670 539

This table reports the results of the reduced form regression for the post-banding sample period (2007-2018). The dependent variables are excess
long-run returns of stock i from September in year t over the respective horizon. Panel A uses all stocks in the band of 100 around the cutoff,
Panel B uses same band but excludes stocks moving back to the other index in the relevant horizon, Panel C uses all stocks in the band of 300
around the cutoff, Panel D adds all controls to the specification and sample of Panel C (our baseline), Panel E adds year fixed effects, Panel F
adds year fixed effects and excludes stocks moving back to the other index in the relevant horizon. We include only stocks that were in the Russell
1000 (additions) or in the Russell 2000 (deletions) in the previous year. t-statistics based on HAC-robust standard errors with clusters at a stock
level are in parentheses. Significance levels are based on a one-sided test and marked as: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
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A.17 Value and Growth Funds’ Rebalancing

Table 18: Who rebalances additions and deletions? By style
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A.18 Optimized Sampling in Prospectus

Figure 8: An extract from the prospectus of Fidelity’s ZERO Large Cap index fund.
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