Trade Exposure and Earnings Inequality

Rodrigo Adão (Booth), Paul Carrillo (GWU), Arnaud Costinot (MIT) Dave Donaldson (MIT), Dina Pomeranz (UZH)

PRELIMINARY AND INCOMPLETE

Research Questions

Exposure: Who is exposed to international trade?

Incidence: How do differences in trade exposure affect inequality?

This Paper

New data to measure trade exposure in Ecuador:

- Each individual is a potentially distinct factor of production
- Both as a *worker* and a *capital owner*
- Export exposure (EE): share of factor's services that are ultimately exported—in spirit of Leontief's factor content of trade
- Import exposure (IE): correlation between factor intensity and ultimate import intensity

Investigation of the effect of trade on inequality:

- ► Exports channel: relative EE ⇒ shift in relative factor demand curve
- Imports channel: foreign factor services may be closer substitutes to some domestic factors
 relative IE causes another shift in relative factor demand

Factor demand estimation + counterfactuals:

- Foreign demand shocks and tariff variation as IV
- In general: own and cross-price elasticities
- Today: CES benchmark

Related Literature

Factor content of trade:

- Measurement: Leontief (1953), Bowen et al (1987), Davis and Weinstein (2001), Johnson and Noguera (2012), Dhyne et al (2020)
- For inequality counterfactuals: Deardorff and Staiger (1988), Katz and Murphy (1992), Krugman (2000), Leamer (2000), Burstein and Vogel (2011)

• Examples of exports channel:

- High-quality goods are exported and skill-intensive: e.g. Verhoogen (2008)
- Larger/more productive activities both exported and more skill-intensive: e.g. Yeaple (2005), Matsuyama (2007), Sampson (2014), Burstein and Vogel (2017), Helpman et al (2017), Antras et al (2017)

Examples of imports channel:

- Relative substitutability: Stolper-Samuelson, etc.
- Imported intermediates: Feenstra and Hanson (1996), Grossman and Rossi-Hansberg (2008), Burstein et al (2013), Hummels et al (2014)

• Earnings inequality with individual capitalists:

Piketty et al (2018), Smith et al (2019)

Data

Administrative Microdata on Firms and Individuals in Ecuador (2008-2015)

Corporate income tax filings

Firm revenues, costs, profits

VAT filings: matched firm-to-firm data

Transactions between all formal firms

Customs records

Transaction-level imports & exports by firm

Social security filings: matched employee-employer data

Income of all formal workers in the economy

Civil registrar filings: matched firm-owner data

- Share of each private firm owned by each taxpayer
- Publicly listed firms a minor share of economy

Measuring export exposure (EE)

Individuals' earnings exposure to exports (direct + indirect):

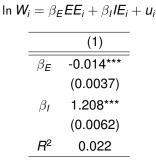
$$W^X = A(I-B)^{-1}X$$

- Where
 - B is firm-to-firm input share matrix (firm-to-firm VAT data)
 - A is matrix where each row measures an individual's share in the value-added of the firm in each column (employer-employee, capital ownership data)
 - X is vector of firm-level export sales (customs data)
- Let W_i be individual i's earnings. Export exposure (EE) is

$$EE_i \equiv \frac{W_i^X}{W_i}$$

Measuring import exposure (IE)

Individuals' earnings exposure to imports (direct + indirect):


$$W^M = \tilde{A}(I - B')^{-1}M$$

- Where
 - B is firm-to-firm input share matrix (firm-to-firm VAT data)
 - Ã is matrix where each row has indicators for the firm in each column with the individuals' main income source (employer-employee, capital ownership data)
 - ► *M* is vector of firm-level import value as a share of total cost (customs data)
- Import exposure (IE) for individual *i* is

$$IE_i \equiv W_i^M$$

Who is exposed to international trade?

Trade exposure and income across individuals

Note. Sample of 1,673,693 individuals. Robust standard errors in parentheses. $^{\ast\ast\ast}\,p<0.01$

- $\beta_E < 0$: Higher export exposure for individuals with lower income
- $\beta_l > 0$: Higher import exposure for individuals with higher income
- Low R²: trade exposure explain small fraction of income inequality

Firm-to-firm links attenuate relationship

	(1)	(2)			
β_E	-0.014***	-0.049***			
	(0.0037)	(0.0046)			
β_I	1.208***	1.618***			
	(0.0062)	(0.0084)			
R^2	0.022	0.022			
Exposure computed with					
Firm trade	Yes	Yes			
Firm-to-firm links	Yes	No			

 $\ln W_i = \beta_E E E_i + \beta_I I E_i + u_i$

Note. Sample of 1,673,693 individuals. Robust standard errors in parentheses. $^{\ast\ast\ast}\,p<0.01$

 Adding firm-to-firm links reduce both coefficients ⇒ Indirect firm-to-firm links make trade exposure more even across individuals.

Observables account for most of export exposure

$$\ln W_i = \beta_E E E_i + \beta_I I E_i + Z_i \gamma + u_i$$

• Z_i : 1,320 dummies for industry-province-education triples

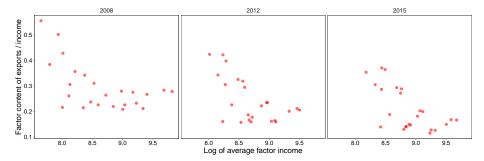
	(1)	(2)		
β_E	-0.014***	0.006		
	(0.0037)	(0.0047)		
β_{I}	1.208***	1.209***		
	(0.0062)	(0.0072)		
R^2	0.022	0.073		
	All	Within		

Note. Sample of 1,673,693 individuals. Robust standard errors in parentheses. *** p<0.01

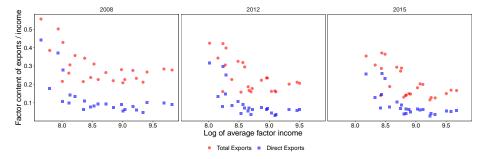
- Weaker correlation between income and export exposure across firms in each industry-education-province
- Similar relation with import exposure within industry-education-province

Observables account for most of export exposure

$$\widehat{\ln W_i} = \beta_E \widehat{EE_i} + \beta_I \widehat{IE_i} + u_i$$

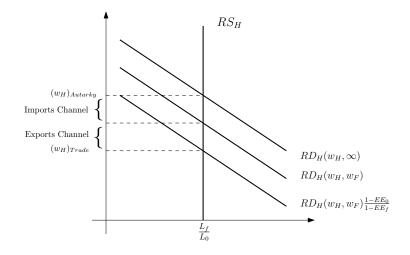

 "^" denotes predicted variable obtained from regression on 1,320 dummies for industry-province-education triples in Z_i

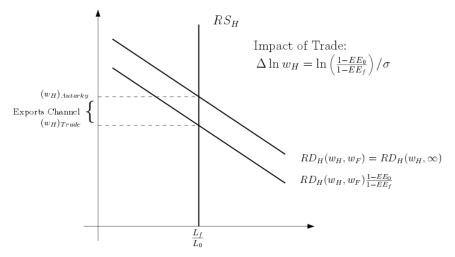
		(1)	(2)
-	β_E	-0.014***	-0.044***
		(0.0037)	(0.0014)
	β_{I}	1.208***	1.213***
		(0.0062)	(0.0028)
	R^2	0.022	0.102
-		All	Between
mple	e of 1,6	73,693 individuals.	Robust standa


Note. Sample of 1,673,693 individuals. Robust standard errors in parentheses. *** p < 0.01

 Stronger relation between income and export exposure across industry-province-education triples

EE by Labor Factor Group


EE by Labor Factor Group: Direct vs Total


NB: "total EE" corresponds to $A(I - B)^{-1}X$; "direct EE" corresponds to AX/W

How Do Differences in Trade Exposure Affect Inequality?

The Simple Economics of Trade and Inequality: Decomposition into Exports and Imports Channels

A Simple Benchmark (For Now): CES Factor Demand

Under CES factor demand (e.g. Antras, de Gotari and Itskhoki, 2017), import channel is zero since w_F doesn't affect relative domestic factor demand

CES Factor Demand Estimation

• Estimating equation (for inverse factor demand function):

$$\Delta \log w_{f,t} = -\frac{1}{\sigma} \Delta \log(1 - EE_{f,t}) + \alpha_t + \varepsilon_{f,t} \qquad \forall \ f \in L$$

• Requires IV. Use shift-share:

$$\Delta Z_{f,t} = \sum_{i} E E_{f,2008}(i) \Delta \log M_t^{US}(i)$$

Where:

- $\Delta \log M_t^{US}(k)$: US import growth in agriculture & mining product k
- EE_{f,2008}(k): EE by factor f in product k (in 2008)

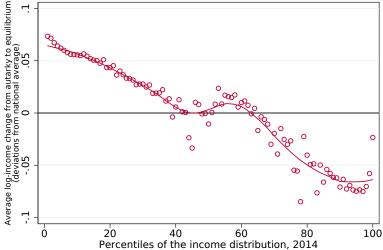
IV Estimates

$$\Delta \log w_{f,t} = \beta \Delta \log(1 - EE_{f,t}) + \alpha_t + \varepsilon_{f,t}$$

Dep. Var.:	$\Delta \log W_{f,t}$		
	OLS	IV	
	(1)	(2)	
$\Delta \log(1 - EE_{f,t})$	1.75*	-2.23**	
	(0.96)	(1.07)	
First-stage F-stat		39.2	

Note: Standard errors clustered at the factor level.

• $\beta = -1/\sigma$


RF and FS) + Control Set

• IV estimate implies $\hat{\sigma} = -\frac{1}{\hat{\beta}} = \frac{1}{2.23} = 0.45$

How Trade Affects Earnings Inequality

• Now calculate
$$\Delta \ln (w_f/w_0) = \frac{1}{\widehat{\sigma}} \ln \left(\frac{1 - EE_0}{1 - EE_f} \right)$$

Distribution of gains from trade in Ecuador, 2014

Conclusion

Concluding Remarks

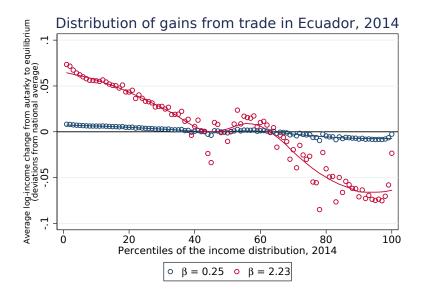
- Exposure: Who is exposed to international trade?
 - New data allows link from trade flows to the individuals (workers and capital owners) who are involved, directly and indirectly.
 - Export exposure (EE) and import exposure (IE)

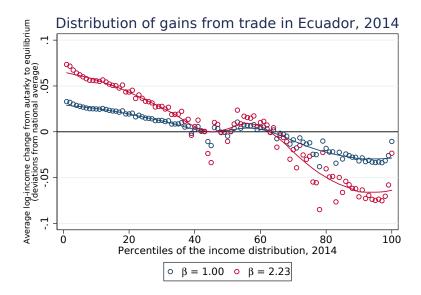
Incidence: How do differences in trade exposure affect inequality?

- Export channel: EE shifts factor demand, effect depends on factor demand elasticity
- Import channel: IE shifts factor demand, depends on cross-factor price elasticities
- In progress:
 - Incorporate capital ownership
 - Estimate strength of import channel

Additional Material

Dep. Var.:	$\Delta \log W_{f,t}$			$\Delta \log(1 - EE_{f,t})$	
	OLS	2SLS	RF	FS	
	(1)	(2)	(3)	(4)	
$\Delta \log(1 - EE_{f,t})$	1.75*	-2.23**			
	(0.96)	(1.07)			
Shift-Share IV			0.51**	-0.23***	
			(0.22)	(0.04)	
F-stat		39.2			


Note: N = 150 (25 factors in 2008-2015). All regressions include time fixed effects and the factor's export share of income in 2008.


Baseline

Robustness I: Control Set

	Dep. var.: $\Delta \log w_{t,t}$				
-	IV	IV	IV	IV	IV
	(1)	(2)	(3)	(4)	(5)
$\Delta \log(1 - EE_{f,t})$	-2.230**	-2.491*	-2.448	-3.171**	-2.801*
	(1.068)	(1.301)	(1.489)	(1.568)	(1.546)
F-stat	39.19	38.92	35.79	38.87	38.51
Controls					
Time dummies	Х	Х	Х	Х	Х
Export share in 2008		Х	Х	Х	Х
Avg wage in 2008			Х		Х
Group time trend				Х	Х

