Heterogeneous Agents Models

Jesús Fernández-Villaverde

University of Pennsylvania
July 11, 2011

Introduction

- Often, we want to deal with model with heterogeneous agents.
- Examples:
(1) Heterogeneity in age: OLG models.
(2) Heterogeneity in preferences: risk sharing.
(3) Heterogeneity in abilities: job market.
(4) Heterogeneity in policies: progressive marginal tax rates.
- Why General Equilibrium?
(1) It imposes discipline: relation between β and r is endogenous.
(2) It generates an endogenous consumption and wealth distribution.
(3) It enables meaningful policy experiments.
- The following slides borrow extensively from Dirk Krueger's lecture notes.

Models without Aggregate Uncertainty I

- Continuum of measure 1 of individuals, each facing an income fluctuation problem.
- Labor income: $w_{t} y_{t}$.
- Same labor endowment process $\left\{y_{t}\right\}_{t=0}^{\infty}, y_{t} \in Y=\left\{y_{1}, y_{2}, \ldots y_{N}\right\}$.
- Labor endowment process follows stationary Markov chain with transitions $\pi\left(y^{\prime} \mid y\right)$.
- Law of large numbers: $\pi\left(y^{\prime} \mid y\right)$ also the deterministic fraction of the population that has this transition.
- Π : stationary distribution associated with π, assumed to be unique.
- At period 0 income of all agents, y_{0}, is given. Population distribution given by Π.

Models without Aggregate Uncertainty II

- Total labor endowment in the economy at each point of time

$$
\bar{L}=\sum_{y} y \Pi(y)
$$

- Probability of event history y^{t}, given initial event y_{0}

$$
\pi_{t}\left(y^{t} \mid y_{0}\right)=\pi\left(y_{t} \mid y_{t-1}\right) * \ldots * \pi\left(y_{1} \mid y_{0}\right)
$$

- Note use of Markov structure.
- Substantial idiosyncratic uncertainty, but no aggregate uncertainty.
- Thus, there is hope for stationary equilibrium with constant w and r.

Models without Aggregate Uncertainty III

- Preferences

$$
u(c)=\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right)
$$

- Budget constraint

$$
c_{t}+a_{t+1}=w_{t} y_{t}+\left(1+r_{t}\right) a_{t}
$$

- Borrowing constraint

$$
a_{t+1} \geq 0
$$

- Initial conditions of agent $\left(a_{0}, y_{0}\right)$ with initial population measure $\Phi_{0}\left(a_{0}, y_{0}\right)$.
- Allocation: $\left\{c_{t}\left(a_{0}, y^{t}\right), a_{t+1}\left(a_{0}, y^{t}\right)\right\}$.

Models without Aggregate Uncertainty IV

- Technology

$$
Y_{t}=F\left(K_{t}, L_{t}\right)
$$

with standard assumptions.

- Capital depreciates at rate $0<\delta<1$.
- Aggregate resource constraint

$$
C_{t}+K_{t+1}-(1-\delta) K_{t}=F\left(K_{t}, L_{t}\right)
$$

- The only asset in economy is the physical capital stock. No state-contingent claims (a form of incomplete markets).

Sequential Markets Competitive Equilibrium I

Definition

Given Φ_{0}, a sequential markets competitive equilibrium is allocations for households $\left\{c_{t}\left(a_{0}, y^{t}\right), a_{t+1}\left(a_{0}, y^{t}\right)\right\}$ allocations for the representative firm $\left\{K_{t}, L_{t}\right\}_{t=0}^{\infty}$, prices $\left\{w_{t}, r_{t}\right\}_{t=0}^{\infty}$ such that:
(1) Given prices, allocations maximize utility subject to the budget constraint and subject to the nonnegativity constraints on assets and consumption.

$$
\begin{gathered}
r_{t}=F_{k}\left(K_{t}, L_{t}\right)-\delta \\
w_{t}=F_{L}\left(K_{t}, L_{t}\right)
\end{gathered}
$$

Sequential Markets Competitive Equilibrium II

Definition (cont.)

2. For all t

$$
\begin{aligned}
K_{t+1}= & \int \sum_{y^{t} \in Y^{t}} a_{t+1}\left(a_{0}, y^{t}\right) \pi\left(y^{t} \mid y_{0}\right) d \Phi_{0}\left(a_{0}, y_{0}\right) \\
L_{t}= & \bar{L}=\int \sum_{y^{t} \in Y^{t}} y_{t} \pi\left(y^{t} \mid y_{0}\right) d \Phi_{0}\left(a_{0}, y_{0}\right) \\
& \int \sum_{y^{t} \in Y^{t}} c_{t}\left(a_{0}, y^{t}\right) \pi\left(y^{t} \mid y_{0}\right) d \Phi_{0}\left(a_{0}, y_{0}\right) \\
& +\int \sum_{y^{t} \in Y^{t}} a_{t+1}\left(a_{0}, y^{t}\right) \pi\left(y^{t} \mid y_{0}\right) d \Phi_{0}\left(a_{0}, y_{0}\right) \\
= & F\left(K_{t}, L_{t}\right)+(1-\delta) K_{t}
\end{aligned}
$$

Recursive Equilibrium

- Individual state (a, y).
- Aggregate state variable $\Phi(a, y)$.
- $A=[0, \infty)$: set of possible asset holdings.
- Y : set of possible labor endowment realizations.
- $\mathcal{P}(Y)$ is power set of Y.
- $\mathcal{B}(A)$ is Borel σ-algebra of A.
- $Z=A \times Y$ and $\mathcal{B}(Z)=\mathcal{P}(Y) \times \mathcal{B}(A)$.
- \mathcal{M} : set of all probability measures on the measurable space $M=(Z, \mathcal{B}(Z))$.

Household Problem in Recursive Formulation

$$
\begin{gathered}
v(a, y ; \Phi)=\max _{c \geq 0, a^{\prime} \geq 0} u(c)+\beta \sum_{y^{\prime} \in Y} \pi\left(y^{\prime} \mid y\right) v\left(a^{\prime}, y^{\prime} ; \Phi^{\prime}\right) \\
\text { s.t. } c+a^{\prime}=w(\Phi) y+(1+r(\Phi)) a \\
\Phi^{\prime}=H(\Phi)
\end{gathered}
$$

- Function $H: \mathcal{M} \rightarrow \mathcal{M}$ is called the aggregate "law of motion".

Definition

A RCE is value function $v: Z \times M \rightarrow R$, policy functions for the household $a^{\prime}: Z \times M \rightarrow R$ and $c: Z \times M \rightarrow R$, policy functions for the firm $K: M \rightarrow R$ and $L: M \rightarrow R$, pricing functions $r: M \rightarrow R$ and $w: M \rightarrow R$ and law of motion $H: M \rightarrow M$ s.t.
(1) v, a^{\prime}, c are measurable with respect to $\mathcal{B}(Z), v$ satisfies Bellman equation and a^{\prime}, c are the policy functions, given $r()$ and $w()$
(2) K, L satisfy, given $r()$ and $w()$

$$
\begin{gathered}
r(\Phi)=F_{K}(K(\Phi), L(\Phi))-\delta \\
w(\Phi)=F_{L}(K(\Phi), L(\Phi))
\end{gathered}
$$

Definition (cont.)

3. For all $\Phi \in \mathcal{M}$

$$
\begin{gathered}
K^{\prime}\left(\Phi^{\prime}\right)=K(H(\Phi))=\int a^{\prime}(a, y ; \Phi) d \Phi \\
L(\Phi)=\int y d \Phi \\
\int c(a, y ; \Phi) d \Phi+\int a^{\prime}(a, y ; \Phi) d \Phi=F(K(\Phi), L(\Phi))+(1-\delta) K(\Phi)
\end{gathered}
$$

4. Aggregate law of motion H is generated by π and a^{\prime}.

Transition Functions I

- Define transition function $Q_{\Phi}: Z \times \mathcal{B}(Z) \rightarrow[0,1]$ by

$$
Q_{\Phi}((a, y),(\mathcal{A}, \mathcal{Y}))=\sum_{y^{\prime} \in \mathcal{Y}}\left\{\begin{array}{c}
\pi\left(y^{\prime} \mid y\right) \text { if } a^{\prime}(a, y ; \Phi) \in \mathcal{A} \\
0 \text { else }
\end{array}\right.
$$

for all $(a, y) \in Z$ and all $(\mathcal{A}, \mathcal{Y}) \in \mathcal{B}(Z)$

- $Q_{\Phi}((a, y),(\mathcal{A}, \mathcal{Y}))$ is the probability that an agent with current assets a and income y ends up with assets a^{\prime} in \mathcal{A} tomorrow and income y^{\prime} in \mathcal{Y} tomorrow.
- Hence

$$
\begin{aligned}
\Phi^{\prime}(\mathcal{A}, \mathcal{Y}) & =(H(\Phi))(\mathcal{A}, \mathcal{Y}) \\
& =\int Q_{\Phi}((a, y),(\mathcal{A}, \mathcal{Y})) \Phi(d a \times d y)
\end{aligned}
$$

Stationary RCE I

Definition

A stationary $R C E$ is value function $v: Z \rightarrow R$, policy functions for the household $a^{\prime}: Z \rightarrow R$ and $c: Z \rightarrow R$, policies for the firm K, L, prices r, w and a measure $\Phi \in M$ such that
(1) v, a^{\prime}, c are measurable with respect to $B(Z), v$ satisfies the household's Bellman equation and a^{\prime}, c are the associated policy functions, given r and w.
(2) K, L satisfy, given r and w

$$
\begin{aligned}
r & =F_{k}(K, L)-\delta \\
w & =F_{L}(K, L)
\end{aligned}
$$

Stationary RCE II

Definition (cont.)

3.

$$
\begin{gathered}
K=\int a^{\prime}(a, y) d \Phi \\
L(\Phi)=\int y d \Phi \\
\int c(a, y) d \Phi+\int a^{\prime}(a, y) d \Phi=F(K, L)+(1-\delta) K
\end{gathered}
$$

4. For all $(\mathcal{A}, \mathcal{Y}) \in \mathcal{B}(Z)$

$$
\Phi(\mathcal{A}, \mathcal{Y})=\int Q((a, y),(\mathcal{A}, \mathcal{Y})) d \Phi
$$

where Q is transition function induced by π and a^{\prime}.

Example: Discrete State Space

- Suppose $A=\left\{a_{1}, \ldots, a_{M}\right\}$. Then Φ is $M * N \times 1$ column vector and $Q=\left(q_{i j, k l}\right)$ is $M * N \times M * N$ matrix with

$$
q_{i j, k l}=\operatorname{Pr}\left(\left(a^{\prime}, y^{\prime}\right)=\left(a_{k}, y_{l}\right) \mid(a, y)=\left(a_{i}, y_{l}\right)\right)
$$

- Stationary measure Φ satisfies matrix equation

$$
\Phi=Q^{T} \Phi
$$

- Φ is (rescaled) eigenvector associated with an eigenvalue $\lambda=1$ of Q^{T}.
- Q^{T} is a stochastic matrix and thus has at least one unit eigenvalue. If it has more than one unit eigenvalue, continuum of stationary measures.

Existence, Uniqueness, and Stability

- Existence (and Uniqueness) of Stationary RCE boils down to one equation in one unknown.
- Asset market clearing condition

$$
K=K(r)=\int a^{\prime}(a, y) d \Phi \equiv E a(r)
$$

- By Walras' law forget about goods market.
- Labor market equilibrium $L=\bar{L}$ and \bar{L} is exogenously given.
- Capital demand of firm $K(r)$ is defined implicitly as

$$
r=F_{k}(K(r), \bar{L})-\delta
$$

- Existence is usually easy to show.
- Uniqueness is more complicated.
- Stability is not well-understood.

Computation

(1) Fix an $r \in(-\delta, 1 / \beta-1)$.
(2) For a fixed r, solve household's recursive problem. This yields a value function v_{r} and decision rules a_{r}^{\prime}, c_{r}.
(3) The policy function a_{r}^{\prime} and π induce Markov transition function Q_{r}.
(4) Compute the unique stationary measure Φ_{r} associated with this transition function.
(5) Compute excess demand for capital

$$
d(r)=K(r)-E a(r)
$$

If zero, stop, if not, adjust r.

Qualitative Results

- Complete markets model: $r^{C M}=1 / \beta-1$.
- This model: $r^{*}<1 / \beta-1$.
- Overaccumulation of capital and oversaving (because of precautionary reasons: liquidity constraints, prudence, or both).
- Question: How big a difference does it make?
- Policy implications?

Calibration I

- CRRA with values $\sigma=\{1,3,5\}$.
- $r^{C M}=0.0416(\beta=0.96)$.
- Cobb-Douglas production function with $\alpha=0.36$.
- $\delta=8 \%$.
- Earning profile:

$$
\log \left(y_{t+1}\right)=\theta \log \left(y_{t}\right)+\sigma_{\varepsilon}\left(1-\theta^{2}\right)^{\frac{1}{2}} \varepsilon_{t+1}
$$

s.t.

$$
\begin{aligned}
& \operatorname{corr}\left(\log \left(y_{t+1}\right), \log \left(y_{t}\right)\right)=\theta \\
& \quad \operatorname{Var}\left(\log \left(y_{t+1}\right)\right)=\sigma_{\varepsilon}^{2}
\end{aligned}
$$

- Consider $\theta \in\{0,0.3,0.6,0.9\}$ and $\sigma_{\varepsilon} \in\{0.2,0.4\}$.

Calibration II

- Discretize, using Tauchen's method.
- Set $N=7$.
- Since $\log \left(y_{t}\right) \in(-\infty, \infty)$ subdivide in intervals

$$
\left(-\infty,-\frac{5}{2} \sigma_{\varepsilon}\right) \quad\left[-\frac{5}{2} \sigma_{\varepsilon},-\frac{3}{2} \sigma_{\varepsilon}\right) \quad \ldots \quad\left[\frac{3}{2} \sigma_{\varepsilon}, \frac{5}{2} \sigma_{\varepsilon}\right) \quad\left[\frac{5}{2} \sigma_{\varepsilon}, \infty\right)
$$

- State space for log-income: "midpoints"

$$
Y^{\log }=\left\{-3 \sigma_{\mathcal{\varepsilon}},-2 \sigma_{\mathcal{\varepsilon}},-\sigma_{\mathcal{\varepsilon}}, 0, \sigma_{\mathcal{\varepsilon}}, 2 \sigma_{\mathcal{\varepsilon}}, 3 \sigma_{\varepsilon}\right\}
$$

- Matrix π : fix $s_{i}=\log (y) \in Y^{\log }$ today and the conditional probability of $s_{j}=\log \left(y^{\prime}\right) \in Y^{\log }$ tomorrow is

$$
\pi\left(\log \left(y^{\prime}\right)=s_{j} \mid \log (y)=s_{i}\right)=\int_{l_{j}} \frac{e^{-\frac{\left(x-\theta s_{i}\right)^{2}}{2 \sigma_{y}}}}{(2 \pi)^{0.5} \sigma_{y}} d x
$$

$$
\text { where } \sigma_{y}=\sigma_{\varepsilon}\left(1-\theta^{2}\right)^{\frac{1}{2}}
$$

Calibration III

- Find the stationary distribution of π, hopefully unique, by solving

$$
\Pi=\pi^{T} \Pi
$$

- Take $\tilde{Y}=e^{Y^{\log }}$

$$
\tilde{Y}=\left\{e^{-3 \sigma_{\varepsilon}}, e^{-2 \sigma_{\varepsilon}}, e^{-\sigma_{\varepsilon}}, 1, e^{\sigma_{\varepsilon}}, e^{2 \sigma_{\varepsilon}}, e^{3 \sigma_{\varepsilon}}\right\}
$$

- Compute average labor endowment $\bar{y}=\sum_{y \in \tilde{Y}} y \Pi(y)$.
- Normalize all states by \bar{y}

$$
\begin{aligned}
Y & =\left\{y_{1}, \ldots, y_{7}\right\} \\
& =\left\{\frac{e^{-3 \sigma_{\varepsilon}}}{\bar{y}}, \frac{e^{-2 \sigma_{\varepsilon}}}{\bar{y}}, \frac{e^{-\sigma_{\varepsilon}}}{\bar{y}}, \frac{1}{\bar{y}}, \frac{e^{\sigma_{\varepsilon}}}{\bar{y}}, \frac{e^{2 \sigma_{\varepsilon}}}{\bar{y}}, \frac{e^{3 \sigma_{\varepsilon}}}{\bar{y}}\right\}
\end{aligned}
$$

- Then:

$$
\sum_{y \in Y} y \Pi(y)=1
$$

Results

- Cobb-Douglas production function and $\bar{L}=1$ we have $Y=K^{\alpha}$ and

$$
r+\delta=\alpha K^{\alpha-1}
$$

- s is the aggregate saving rate:

$$
r+\delta=\frac{\alpha Y}{K}=\frac{\alpha \delta}{s} \Rightarrow s=\frac{\alpha \delta}{r+\delta}
$$

- Benchmark of complete markets: $r^{C M}=4.16 \%$ and $s=23.7 \%$.
- Keeping σ and σ_{ε} fixed, an increase in θ leads to more precautionary saving and more overaccumulation of capital.
- Keeping θ and σ_{ε} fixed, an increase in σ leads to more precautionary saving and more overaccumulation of capital
- Keeping σ and θ fixed, an increase in σ_{ε} leads to more precautionary saving and more overaccumulation of capital.

Unexpected Aggregate Shocks and Transition Dynamics

- Hypothetical thought experiment:
- Economy is in stationary equilibrium, with a given government policy.
- Unexpectedly government policy changes. Exogenous change may be either transitory or permanent.
- Want to compute transition path induced by the exogenous change, from the old stationary equilibrium to a new stationary equilibrium.
- Example: permanent introduction of a capital income tax at rate τ. Receipts are rebated lump-sum to households as government transfers.
- Key: assume that after T periods the transition from old to new stationary equilibrium is completed.

Algorithm I

(1) Fix T.
(2) Compute stationary equilibrium $\Phi_{0}, v_{0}, r_{0}, w_{0}, K_{0}$ associated with $\tau=\tau_{0}=0$.
(3) Compute stationary equilibrium $\Phi_{\infty}, v_{\infty}, r_{\infty}, w_{\infty}, K_{\infty}$ associated with $\tau_{\infty}=\tau$. Assume:

$$
\Phi_{T}, v_{T}, r_{T}, w_{T}, K_{T}=\Phi_{\infty}, v_{\infty}, r_{\infty}, w_{\infty}, K_{\infty}
$$

(4) Guess sequence $\left\{\hat{K}_{t}\right\}_{t=1}^{T-1}$ Note that \hat{K}_{1} is determined by decisions at time $0, \hat{K}_{1}=K_{0}$, and $L_{t}=L_{0}=\bar{L}$ is fixed. Also:

$$
\begin{gathered}
\hat{w}_{t}=F_{L}\left(\hat{K}_{t}, \bar{L}\right) \\
\hat{r}_{t}=F_{K}\left(\hat{K}_{t}, \bar{L}\right)-\delta \\
\hat{T}_{t}=\tau_{t} \hat{r}_{t} \hat{K}_{t} .
\end{gathered}
$$

Algorithm II

(5) Since we know $v_{T}(a, y)$ and $\left\{\hat{r}_{t}, \hat{w}_{t}, \hat{T}_{t}\right\}_{t=1}^{T-1}$, we can solve for $\left\{\hat{v}_{t}, \hat{c}_{t}, \hat{a}_{t+1}\right\}_{t=1}^{T-1}$ backwards.
(6) With $\left\{\hat{a}_{t+1}\right\}$ define transition laws $\left\{\hat{\Gamma}_{t}\right\}_{t=1}^{T-1}$. Given $\Phi_{0}=\Phi_{1}$ from the initial stationary equilibrium, iterate forward:

$$
\hat{\Phi}_{t+1}=\hat{\Gamma}_{t}\left(\hat{\Phi}_{t}\right)
$$

for $t=1, \ldots, T-1$.
(7) With $\left\{\hat{\Phi}_{t}\right\}_{t=1}^{T}$, compute $\hat{A}_{t}=\int \operatorname{ad} \hat{\Phi}_{t}$ for $t=1, \ldots, T$.
(8) Check whether:

$$
\max _{1 \leq t<T}\left|\hat{A}_{t}-\hat{K}_{t}\right|<\varepsilon
$$

If yes, go to 9 . If not, adjust your guesses for $\left\{\hat{K}_{t}\right\}_{t=1}^{T-1}$ in 4 .
(9) Check whether $\left|\hat{A}_{T}-K_{T}\right|<\varepsilon$. If yes, we are done and should save $\left\{\hat{v}_{t}, \hat{a}_{t+1}, \hat{c}_{t}, \hat{\Phi}_{t}, \hat{r}_{t}, \hat{w}_{t}, \hat{K}_{t}\right\}$. If not, go to 1 . and increase T.

Welfare Consequences of the Policy Reform I

- Previous procedure determines aggregate variables such as $r_{t}, w_{t}, \Phi_{t}, K_{t}$, decision rules c_{r}, a_{t+1}, and value functions v_{t}.
- We can use v_{0}, v_{1}, and v_{T} to determine the welfare consequences from the reform.
- Suppose that

$$
U(c)=\frac{c^{1-\sigma}}{1-\sigma}
$$

- Optimal consumption allocation in initial stationary equilibrium, in sequential formulation, $\left\{c_{s}\right\}_{s=0}^{\infty}$.

$$
v_{0}(a, y)=\mathbb{E}_{0} \sum_{s=0}^{\infty} \frac{c_{t}^{1-\sigma}}{1-\sigma}
$$

Welfare Consequences of the Policy Reform II

- Define g implicitly as:

$$
\begin{aligned}
v_{1}(a, y) & =v_{0}(a, y ; g)=(1+g)^{1-\sigma} \mathbb{E}_{0} \sum_{s=0}^{\infty} \frac{c_{t}^{1-\sigma}}{1-\sigma} \\
& =(1+g)^{1-\sigma} v_{0}(a, y)
\end{aligned}
$$

- Then:

$$
g(a, y)=\left[\frac{v_{1}(a, y)}{v_{0}(a, y)}\right]^{\frac{1}{1-\sigma}}-1
$$

- Steady state welfare consequences:

$$
g_{s s}(a, y)=\left[\frac{v_{T}(a, y)}{v_{0}(a, y)}\right]^{\frac{1}{1-\sigma}}-1
$$

- $g(a, y)$ and $g_{s s}(a, y)$ may be quite different.
- Example: social security reform.

Aggregate Uncertainty and Distributions as State Variables

- Why complicate the model? Want to talk about economic fluctuations and its interaction with idiosyncratic uncertainty.
- But now we have to characterize and compute entire recursive equilibrium: distribution as state variable.
- Infinite-dimensional object.
- Very limited theoretical results about existence, uniqueness, stability, goodness of approximation

The Model I

- Aggregate production function:

$$
Y_{t}=s_{t} F\left(K_{t}, L_{t}\right)
$$

- Let

$$
s_{t} \in\left\{s_{b}, s_{g}\right\}=S
$$

with $s_{b}<s_{g}$ and conditional probabilities $\pi\left(s^{\prime} \mid s\right)$.

- Idiosyncratic labor productivity y_{t} correlated s_{t}.

$$
y_{t} \in\left\{y_{u}, y_{e}\right\}=Y
$$

where $y_{u}<y_{e}$ stands for the agent being unemployed and y_{e} stands for the agent being employed.

- Probability of being unemployed is higher during recessions than during expansions.

The Model II

- Probability of individual productivity tomorrow of y^{\prime} and aggregate state s^{\prime} tomorrow, conditional on states y and s today:

$$
\pi\left(y^{\prime}, s^{\prime} \mid y, s\right) \geq 0
$$

π is 4×4 matrix.

- Law of large numbers: idiosyncratic uncertainty averages out and only aggregate uncertainty determines $\Pi_{s}(y)$, the fraction of the population in idiosyncratic state y if aggregate state is s.
- Consistency requires:

$$
\begin{aligned}
& \sum_{y^{\prime} \in Y} \pi\left(y^{\prime}, s^{\prime} \mid y, s\right)=\pi\left(s^{\prime} \mid s\right) \text { all } y \in Y, \text { all } s, s^{\prime} \in S \\
& \Pi_{s^{\prime}}\left(y^{\prime}\right)=\sum_{y \in Y} \frac{\pi\left(y^{\prime}, s^{\prime} \mid y, s\right)}{\pi\left(s^{\prime} \mid s\right)} \Pi_{s}(y) \text { for all } s, s^{\prime} \in S
\end{aligned}
$$

Recursive Formulation

- Individual state variables (a, y).
- Aggregate state variables (s, Φ).
- Recursive formulation:

$$
\begin{gathered}
v(a, y, s, \Phi)=\max _{c, a^{\prime} \geq 0}\left\{U(c)+\beta \sum_{y^{\prime} \in Y} \sum_{s^{\prime} \in S} \pi\left(y^{\prime}, s^{\prime} \mid y, s\right) v\left(a^{\prime}, y^{\prime}, s^{\prime}, \Phi^{\prime}\right)\right. \\
\text { s.t. } c+a^{\prime}=w(s, \Phi) y+(1+r(s, \Phi)) a \\
\Phi^{\prime}=H\left(s, \Phi, s^{\prime}\right)
\end{gathered}
$$

Definition

A RCE is value function $v: Z \times S \times \mathcal{M} \rightarrow R$, policy functions for the household $a^{\prime}: Z \times S \times \mathcal{M} \rightarrow R$ and $c: Z \times S \times \mathcal{M} \rightarrow R$, policy functions for the firm $K: S \times \mathcal{M} \rightarrow R$ and $L: S \times \mathcal{M} \rightarrow R$, pricing functions $r: S \times \mathcal{M} \rightarrow R$ and $w: S \times \mathcal{M} \rightarrow R$ and an aggregate law of motion $H: S \times \mathcal{M} \times S \rightarrow \mathcal{M}$ such that
(1) v, a^{\prime}, c are measurable with respect to $\mathcal{B}(S)$, v satisfies the household's Bellman equation and a^{\prime}, c are the associated policy functions, given $r()$ and $w()$
(2) K, L satisfy, given $r()$ and $w()$

$$
\begin{gathered}
r(s, \Phi)=F_{K}(K(s, \Phi), L(s, \Phi))-\delta \\
w(s, \Phi)=F_{L}(K(s, \Phi), L(s, \Phi))
\end{gathered}
$$

Definition (cont.)

3. For all $\Phi \in \mathcal{M}$ and all $s \in S$

$$
\begin{aligned}
K(H(s, \Phi))= & \int a^{\prime}(a, y, s, \Phi) d \Phi \\
L(s, \Phi)= & \int y d \Phi \\
& \int c(a, y, s, \Phi) d \Phi+\int a^{\prime}(a, y, s, \Phi) d \Phi \\
= & F(K(s, \Phi), L(s, \Phi))+(1-\delta) K(s, \Phi)
\end{aligned}
$$

4. The aggregate law of motion H is generated by the exogenous Markov process π and the policy function a^{\prime}.

Transition Function and Law of Motion

- Define $Q_{\Phi, s, s^{\prime}}: Z \times \mathcal{B}(Z) \rightarrow[0,1]$ by

$$
Q_{\Phi, s, s^{\prime}}((a, y),(\mathcal{A}, \mathcal{Y}))=\sum_{y^{\prime} \in \mathcal{Y}}\left\{\begin{array}{cl}
\pi\left(y^{\prime}, s^{\prime} \mid y, s\right) & \text { if } a^{\prime}(a, y, s, \Phi) \in \mathcal{A} \\
0 \text { else }
\end{array}\right.
$$

- Aggregate law of motion

$$
\begin{aligned}
\Phi^{\prime}(\mathcal{A}, \mathcal{Y}) & =\left(H\left(s, \Phi, s^{\prime}\right)\right)(\mathcal{A}, \mathcal{Y}) \\
& =\int Q_{\Phi, s, s^{\prime}}((a, y),(\mathcal{A}, \mathcal{Y})) \Phi(d a \times d y)
\end{aligned}
$$

Computation of the Recursive Equilibrium I

- Key computational problem: aggregate wealth distribution Φ is an infinite-dimensional object.
- Agents need to keep track of the aggregate wealth distribution to forecast future capital stock and thus future prices. But for K^{\prime} need entire Φ since

$$
K^{\prime}=\int a^{\prime}(a, y, s, \Phi) d \Phi
$$

- If a^{\prime} were linear in a, with same slope for all $y \in Y$, exact aggregation would occur and K would be a sufficient statistic for K^{\prime}.
- Trick: Approximate the distribution Φ with a finite set of moments.
- Let the n-dimensional vector m denote the first n moments of the asset distribution

Computation of the Recursive Equilibrium II

- Agents use an approximate law of motion

$$
m^{\prime}=H_{n}(s, m)
$$

- Agents are boundedly rational: moments of higher order than n of the current wealth distribution may help to more accurately forecast prices tomorrow.
- We choose the number of moments and the functional form of the function H_{n}.
- Krusell and Smith pick $n=1$ and pose

$$
\log \left(K^{\prime}\right)=a_{s}+b_{s} \log (K)
$$

for $s \in\left\{s_{b}, s_{g}\right\}$. Here $\left(a_{s}, b_{s}\right)$ are parameters that need to be determined.

Computation of the Recursive Equilibrium III

- Household problem

$$
\begin{aligned}
v(a, y, s, K)= & \max _{c, a^{\prime} \geq 0}\left\{U(c)+\beta \sum_{y^{\prime} \in Y} \sum_{s^{\prime} \in S} \pi\left(y^{\prime}, s^{\prime} \mid y, s\right) v\left(a^{\prime}, y^{\prime}, s^{\prime}, K^{\prime}\right)\right\} \\
& \text { s.t. } c+a^{\prime}=w(s, K) y+(1+r(s, K)) a \\
& \log \left(K^{\prime}\right)=a_{s}+b_{s} \log (K)
\end{aligned}
$$

- Reduction of the state space to a four dimensional space $(a, y, s, K) \in \mathbf{R} \times Y \times S \times \mathbf{R}$.

Algorithm I

(1) Guess $\left(a_{s}, b_{s}\right)$.
(2) Solve households problem to obtain $a^{\prime}(a, y, s, K)$.
(3) Simulate economy for large number of T periods for large number N of households:

- Start with initial conditions for the economy (s_{0}, K_{0}) and for each household (a_{0}^{i}, y_{0}^{i}).
- Draw random sequences $\left\{s_{t}\right\}_{t=1}^{T}$ and $\left\{y_{t}^{i}\right\}_{t=1, i=1}^{T, N}$ and use $a^{\prime}(a, y, s, K)$ and perceived law of motion for K to generate sequences of $\left\{a_{t}^{i}\right\}_{t=1, i=1}^{T, N}$.
- Aggregate:

$$
K_{t}=\frac{1}{N} \sum_{i=1}^{N} a_{t}^{i}
$$

Algorithm II

(4) Run the regressions

$$
\log \left(K^{\prime}\right)=\alpha_{s}+\beta_{s} \log (K)
$$

to estimate $\left(\alpha_{s}, \beta_{s}\right)$ for $s \in S$.
(5) If the R^{2} for this regression is high and $\left(\alpha_{s}, \beta_{s}\right) \approx\left(a_{s}, b_{s}\right)$ stop. An approximate equilibrium was found.
(6) Otherwise, update guess for $\left(a_{s}, b_{s}\right)$. If guesses for $\left(a_{s}, b_{s}\right)$ converge, but R^{2} remains low, add higher moments to the aggregate law of motion and/or experiment with a different functional form for it.

Calibration I

- Period 1 quarter.
- CRRA utility with $\sigma=1$ (log-utility)
- $\beta=0.99^{4}=0.96$.
- $\alpha=0.36$.
- $\delta=(1-0.025)^{4}-1=9.6 \%$.
- Aggregate component: two states (recession, expansion)

$$
S=\{0.99,1.01\} \Rightarrow \sigma_{s}=0.01
$$

- Symmetric transition matrix $\pi\left(s_{g} \mid s_{g}\right)=\pi\left(s_{b} \mid s_{b}\right)$.
- Expected time in each state: 8 quarters, hence $\pi\left(s_{g} \mid s_{g}\right)=\frac{7}{8}$ and

$$
\pi\left(s^{\prime} \mid s\right)=\left(\begin{array}{cc}
\frac{7}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{7}{8}
\end{array}\right)
$$

Calibration II

- Idiosyncratic component: two states (employment and unemployment):

$$
Y=\{0.25,1\}
$$

Unemployed person makes 25% of the labor income of an employed person.

- Transition probabilities:

$$
\pi\left(y^{\prime}, s^{\prime} \mid y, s\right)=\pi\left(y^{\prime} \mid s^{\prime}, y, s\right) * \pi\left(s^{\prime} \mid s\right)
$$

- Specify four 2×2 matrices $\pi\left(y^{\prime} \mid s^{\prime}, y, s\right)$.

Calibration III

- Expansion: average time of unemployment equal to 1.5 quarters

$$
\begin{aligned}
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{g}, y=y_{u}, s=s_{g}\right)=\frac{1}{3} \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{g}, y=y_{u}, s=s_{g}\right)=\frac{2}{3}
\end{aligned}
$$

- Recession: average time of unemployment equal to 2.5 quarters

$$
\begin{aligned}
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{b}, y=y_{u}, s=s_{b}\right)=0.6 \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{b}, y=y_{u}, s=s_{b}\right)=0.4
\end{aligned}
$$

Calibration IV

- Switch from g to b : probability of remaining unemployed 1.25 higher

$$
\begin{aligned}
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{b}, y=y_{u}, s=s_{g}\right)=0.75 \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{b}, y=y_{u}, s=s_{g}\right)=0.25
\end{aligned}
$$

- Switch from b to g : probability of remaining unemployed 0.75 higher

$$
\begin{aligned}
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{g}, y=y_{u}, s=s_{b}\right)=0.25 \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{g}, y=y_{u}, s=s_{b}\right)=0.75
\end{aligned}
$$

- Idea: best times for finding a job are when the economy moves from a recession to an expansion, the worst chances are when the economy moves from a boom into a recession.

Calibration V

- In recessions unemployment rate is $\Pi_{s_{b}}\left(y_{u}\right)=10 \%$ and in expansions it is $\Pi_{s_{g}}\left(y_{u}\right)=4 \%$. Remember:

$$
\Pi_{s^{\prime}}\left(y^{\prime}\right)=\sum_{y \in Y} \frac{\pi\left(y^{\prime}, s^{\prime} \mid y, s\right)}{\pi\left(s^{\prime} \mid s\right)} \Pi_{s}(y) \text { for all } s, s^{\prime} \in S
$$

- This gives

$$
\begin{aligned}
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{g}, y=y_{e}, s=s_{g}\right)=0.028 \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{g}, y=y_{e}, s=s_{g}\right)=0.972 \\
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{b}, y=y_{e}, s=s_{b}\right)=0.04 \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{b}, y=y_{e}, s=s_{b}\right)=0.96 \\
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{b}, y=y_{e}, s=s_{g}\right)=0.079 \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{b}, y=y_{e}, s=s_{g}\right)=0.921 \\
& \pi\left(y^{\prime}=y_{u} \mid s^{\prime}=s_{g}, y=y_{e}, s=s_{b}\right)=0.02 \\
& \pi\left(y^{\prime}=y_{e} \mid s^{\prime}=s_{g}, y=y_{e}, s=s_{b}\right)=0.98
\end{aligned}
$$

Calibration VI

- In summary:

$$
\pi=\left(\begin{array}{cccc}
0.525 & 0.035 & 0.09375 & 0.0099 \\
0.35 & 0.84 & 0.03125 & 0.1151 \\
0.03125 & 0.0025 & 0.292 & 0.0245 \\
0.09375 & 0.1225 & 0.583 & 0.8505
\end{array}\right)
$$

Numerical Results

Model delivers
(1) Aggregate law of motion

$$
m^{\prime}=H_{n}(s, m)
$$

(2) Individual decision rules

$$
a^{\prime}(a, y, s, m)
$$

(3) Time-varying cross-sectional wealth distributions

$$
\Phi(a, y)
$$

Aggregate Law of Motion I

- Agents are boundedly rational: aggregate law of motion perceived by agents may not coincide with actual law of motion.
- Only thing to forecast is K^{\prime}. Hence try $n=1$.
- Converged law of motion:

$$
\begin{aligned}
& \log \left(K^{\prime}\right)=0.095+0.962 \log (K) \text { for } s=s_{g} \\
& \log \left(K^{\prime}\right)=0.085+0.965 \log (K) \text { for } s=s_{b}
\end{aligned}
$$

- How irrational are agents? Use simulated time series $\left\{\left(s_{t}, K_{t}\right\}_{t=0}^{T}\right.$, divide sample into periods with $s_{t}=s_{b}$ and $s_{t}=s_{g}$, and run

$$
\log \left(K_{t+1}\right)=\alpha_{j}+\beta_{j} \log \left(K_{t}\right)+\varepsilon_{t+1}^{j}
$$

Aggregate Law of Motion II

- Define

$$
\hat{\varepsilon}_{t+1}^{j}=\log \left(K_{t+1}\right)-\hat{\alpha}_{j}-\hat{\beta}_{j} \log \left(K_{t}\right) \text { for } j=g, b
$$

- Then:

$$
\begin{aligned}
\sigma_{j} & =\left(\frac{1}{T_{j}} \sum_{t \in \tau_{j}}\left(\hat{\varepsilon}_{t}^{j}\right)^{2}\right)^{0.5} \\
R_{j}^{2} & =1-\frac{\sum_{t \in \tau_{j}}\left(\hat{\varepsilon}_{t}^{j}\right)^{2}}{\sum_{t \in \tau_{j}}\left(\log K_{t+1}-\log \bar{K}\right)^{2}}
\end{aligned}
$$

- If $\sigma_{j}=0$ for $j=g, b$ (if $R_{j}^{2}=1$ for $j=g, b$), then agents do not make forecasting errors

Aggregate Law of Motion III

- Results

$$
\begin{aligned}
R_{j}^{2} & =0.999998 \text { for } j=b, g \\
\sigma_{g} & =0.0028 \\
\sigma_{b} & =0.0036
\end{aligned}
$$

- Maximal forecasting errors for interest rates 25 years into the future is 0.1\%.
- Corresponding utility losses?
- Approximated equilibria may be arbitrarily far away from exact one.

Why Quasi-Aggregation?

- If all agents have linear savings functions with same marginal propensity to save

$$
a^{\prime}(a, y, s, K)=a_{s}+b_{s} a+c_{s} y
$$

- Then:

$$
\begin{aligned}
K^{\prime} & =\int a^{\prime}(a, y, s, K) d \Phi=a_{s}+b_{s} \int a d \Phi+c_{s} \bar{L} \\
& =\tilde{a}_{s}+b_{s} K
\end{aligned}
$$

- Exact aggregation: K sufficient statistic for Φ for forecasting K^{\prime}.
- In this economy: savings functions almost linear with same slope for $y=y_{u}$ and $y=y_{e}$.
- Only exceptions are unlucky agents $\left(y=y_{u}\right)$ with little assets. But these agents hold a negligible fraction of aggregate wealth and do not matter for K dynamics.
- Hence quasi-aggregation!!!

Why is Marginal Propensity to Save Close to 1? I

- PILCH model with certainty equivalence and $r=1 / \beta$

$$
c_{t}=\frac{r}{1+r}\left(\mathbb{E}_{t} \sum_{s=0}^{T-t} \frac{y_{t+s}}{(1+r)^{s}}+a_{t}\right)
$$

- Agents save out of current assets for tomorrow

$$
\frac{a_{t+1}}{1+r}=\left(1-\frac{r}{1+r}\right) a_{t}+G(y)
$$

- Thus under certainty equivalence

$$
a_{t+1}=a_{t}+H(y)
$$

Why is Marginal Propensity to Save Close to 1? II

- In this economy agents are prudent and face liquidity constraints, but almost act as if they are certainty equivalence consumers. Why?
(1) With $\sigma=1$ agents are prudent, but not all that much.
(2) Unconditional standard deviation of individual income is roughly 0.2 , at the lower end of the estimates.
(3) Negative income shocks (unemployment) are infrequent and not very persistent.

