
...

Application of Log-linearization Methods: Optimal
Policy
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Log-linear Methods

• Equilibrium conditions:

v (kt, kt+1, kt+2) = 0,
t = 0, 1, 2, ...

• Solution:
– compute steady state, k∗ such that v (k∗, k∗, k∗) = 0.
– expansion about steady state: V0k̃t + V1k̃t+1 + V2k̃t+2 = 0.

– solve linearized system.

• Last time:
– v equilibrium conditions of a monetary model.
– included a monetary policy rule.
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Log-linear Methods ...

• This time:

– what is optimal monetary policy?

– drop monetary policy rule

– now we’re short one equation!

– system underdetermined....‘many solutions’

– pick the best one.
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Log-linear Methods ...

• Potential problem: time inconsistency of optimal monetary policy:
– period t announcement about period t + 1 policy action, X, influenced in

part by the impact of X on period t decisions by the public.
– when t+1 occurs and it is time to actually implement X, period t decisions

by public are past history.
∗ temptation in t + 1 to modify X since X no longer influences period t

decisions of public.
– temptation to modify X in t + 1 must be avoided, if there is to be any hope

to have optimal policy. Bad outcomes could occur otherwise.
∗ discipline on the part of policy makers is required, if they are to avoid

temptation to deviate.

• Technical implication of potential time inconsistency.
– v equilibrium conditions seemingly not time invarient: apparently our

log-linearization methods do not apply!
– follow Kydland-Prescott ‘trick’ and put problem in Lagrangian form.
– problem of avoiding temptation to deviate boils down to the admonition,

‘remember your multipliers!’
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Example #1: Optimal Monetary Policy - Toy
Example

• Setup
– Model
∗ One equation characterizing private sector behavior:

πt − βπt+1 − γyt = 0, t = 0, 1, 2, .... (1)

∗ Another equation characterizes policy.

– Want to do optimal policy, so throw away policy equation.

– System is now under-determined: one equation in two variables, πt and yt.
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Example #1: Optimal Monetary Policy - Toy Example ...

– Optimization delivers the other equations.

∗ optimize objective:
∞X
t=0

βtu (πt, yt)

subject to (1).

∗ If objective corresponds to social welfare function, this is called Ramsey
optimal problem

∗ Objective may be preferences of policy maker.
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Example #1: Optimal Monetary Policy - Toy Example ...

• Lagrangian representation of problem:

max
{πt,yt;t=0,1,...}

∞X
t=0

βt {u (πt, yt) + λt [πt − βπt+1 − γyt]}

= max
{πt,yt;t=0,1,...}

{u (π0, y0) + λ0 [π0 − βπ1 − γy0]

+βu (π1, y1) + βλ1 [π1 − βπ2 − γy1] + ...}
• First order necessary conditions for optimization:

uπ (π0, y0) + λ0 = 0 (*)
uπ (π1, y1) + λ1 − λ0 = 0

...

uy(π0, y0)− γλ0 = 0

uy(π1, y1)− γλ1 = 0

...

π0 − βπ1 − γy0 = 0

π1 − βπ2 − γy1 = 0

...
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Example #1: Optimal Monetary Policy - Toy Example ...

• These equations ‘look’ different than the ones we’ve seen before

– They are not stationary, (*) is different from the others.

∗ reflects that at time 0 there is a constraint ‘missing’

∗ no need to respect what people were expecting you to do as of time −1

∗ do need to respect what they expect you to do in the future, because that
affects current behavior.

∗ that’s the source of the ‘time inconsistency of optimal plans’.

• Can trick the problem into being stationary (see, e.g., Kydland and Prescott
(JEDC, 1990s) and Levin, Onatski, Williams, and Williams, Macro Annual,
2005). Then, apply standard log-linearization solution method.
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Example #1: Optimal Monetary Policy - Toy Example ...

• Consider:

v (πt, πt+1, yt, λt, λt−1) =

⎡⎣ uπ (πt, yt) + λt − λt−1
uy(πt, yt)− γλt
πt − βπt+1 − γyt

⎤⎦ , for all t.

– time t ‘endogenous variables’: λt, πt, yt

– time t ‘state variable’: λt−1.

– ‘solution’:

λt = λ (λt−1) , πt = π (λt−1) , yt = y (λt−1) ,
such that

v (π (λt−1) , π (λ (λt−1)) , y (λt−1) , λ (λt−1) , λt−1) = 0, for all possible λt−1.
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Example #1: Optimal Monetary Policy - Toy Example ...

• In general, solving this problem exactly is intractable.
• But, can log-linearize!

– Step 1: find π∗, y∗, λ∗ such that following three equations are satisfied:
v (π∗, π∗, y∗, λ∗, λ∗) = 0|{z}

3×1
.

– Step 2: log-linearly expand v about steady state
v (πt, πt+1, yt, λt, λt−1) ' v1π

∗π̂t + v2π
∗π̂t+1 + v3y

∗ŷt + v4∆λ̂t + v5∆λ̂t−1,

where
∆λ̂t ≡ λt − λ∗ (play it safe, don’t divide by something that could be zero!)

– Step 3: Posit
∆λ̂t = Aλ∆λ̂t−1, π̂t = Aπ∆λ̂t−1, ŷt = Ay∆λ̂t−1,

and find Aλ,Aπ,Ay that solve
[v1π

∗Aπ + v2π
∗AπAλ + v3y

∗Ay + v4Aλ + v5]∆λ̂t−1 = 0|{z}
3×1

for all ∆λ̂t−1.
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Example #1: Optimal Monetary Policy - Toy Example ...

• What does the stationary solution have to do with the original non-stationary
problem?

– Do we have a solution to the period 0 problem, (*)?

uπ (π0, y0) + λ0 = 0.

– Yes! Just pretend that this equation really has the following form:

uπ (π0, y0) + λ0 − λ−1 = 0.

Expression (*) does have this form, if we set λ−1 = 0. Then,

π0 = π (0) , y0 = y (0) , λ0 = λ (0) .
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Example #1: Optimal Monetary Policy - Toy Example ...

• The situation is exactly what it is in the neoclassical model when we want to
know what happens when initial capital is away from steady state.

– Plug k0 into the stationary rule

k1 = g (k0) .

• Possible computational pitfall: if λ−1 = 0 is far from λ∗, then linearized
solution might be highly inaccurate (see LOWW).
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Example #1: Optimal Monetary Policy - Toy Example ...

• Optimal policy in real time.

• Suppose today is date zero.

– Solve for λ (·) , y (·) , π (·)

– set λ−1 = 0

– Compute and present in charts:

λ0 = λ (λ−1) , y0 = y (λ−1) , π0 = π (λ−1)

λ1 = λ (λ0) , y1 = y (λ0) , π1 = π (λ0)

...

λt = λ (λt−1) , yt = y (λt−1) , πt = π (λ0)

....
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Example #1: Optimal Monetary Policy - Toy Example ...

• The optimal policy program may break down if policy makers succumb to the
temptation to restart the Ramsey problem at a later date.

– there is a temptation in period 1 when π1 is determined, to ignore a
constraint that went into determining the announcement made about π1 in
period 0:

π0 − βπ1 − γy0 (*)

– If (*) is ignored at date 1, then π1 computed in date 1 solves a different
problem than π1 computed at date 0 and there will be time inconsistency.
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Example #1: Optimal Monetary Policy - Toy Example ...

• Honoring past announcements is equivalent to ‘always respect the past
multipliers’.

– ‘Remembering λ0’ in period 1 ensures that constraint

π0 − βπ1 − γy0 (*)

is incorporated in period 1. In this case, π1 solves the same problem in
period 1 that it did in period 0.

• Practical implication of the admonition, ‘always respect your multipliers’:

– Charts released after later meetings will be consistent with the continuation
of charts released after later meetings.
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Example #1: Optimal Monetary Policy - Toy Example ...

– Example:

date 0 meeting : y0 = y (0) , y1 = y (λ (λ−1)) , y2 = y (λ (λ (λ−1))) , ...

date 1 meeting : YES - y1 = y (λ (λ−1)) , y2 = y (λ (λ (λ−1))) , ...
NO - y1 = y (0) , y2 = y (λ1 (0)) , ...

– If Central Bank selects the bad (‘NO’) option people will see the temporal
inconsistency of policy, and CB will lose credibility.

– Any differences in charts from one meeting to the next must be fully
explicable in terms of new information.
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Example #2: Optimal Monetary Policy - More
General Discussion

• The equilibrium conditions of a model

Etf (zt−1, zt, zt+1, st, st+1)| {z }
(N−1)×1

= 0, for all zt−1|{z}
N×1

(endogenous), st (exogenous)

st = Pst−1 + εt.

• Preferences:

Et

∞X
t=0

βtU (zt, st) .

– Could include discounted utility in f :

v (zt−1, zt, st) = U (zt, st) + βEtv (zt, zt+1, st+1)
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Example #2: Optimal Monetary Policy - More General Discussion ...

• Optimum problem:

maxE0

∞X
t=0

βt

⎧⎨⎩U (zt, st) + λ0t|{z}
1×(N−1)

Etf (zt−1, zt, zt+1, st, st+1)| {z }
(N−1)×1

⎫⎬⎭ .

• N first order conditions:
U1 (zt, st)| {z }

1×N

+ λ0t|{z}
1×(N−1)

Etf2 (zt−1, zt, zt+1, st, st+1)| {z }
(N−1)×N

+β−1 λ0t−1|{z}
1×(N−1)

f3 (zt−2, zt−1, zt, st−1, st)| {z }
(N−1)×N

+βλ0t+1|{z}Et

1×(N−1)

f1 (zt, zt+1, zt+2, st+1, st+2)| {z }
(N−1)×N

= 0|{z}
1×N

– Endogenous variables: zt (N), λt (N − 1)

– Equations: Ramsey optimality conditions (N) , equilibrium condition
(N − 1)
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Example #2: Optimal Monetary Policy - More General Discussion ...

• First order conditions of optimum problem have exactly the same form as the
type of problem we solved using linearization methods.

• Seem much more cumbersome:

– must differentiate f (includes private first order conditions that have already
involved differentiation!)

– good news: LOWW wrote a program that takes U , f as input and writes
Dynare code for solving the system

– solving policy optimum problem is no harder than solving original problem.
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Example #4: Optimal Monetary Policy - CGG

max
νt,p∗t ,Nt,Rt,π̄t,Ft,Kt

E0

∞X
t=0

βt{
Ã
logNt + log p

∗
t − exp (τ t)

N1+ϕ
t

1 + ϕ

!
+λ1t

∙
1

p∗tNt
−Et

Atβ

p∗t+1At+1Nt+1

Rt

π̄t+1

¸
+λ2t

⎡⎣ 1
p∗t
−

⎛⎝(1− θ)

Ã
1− θ (π̄t)

ε−1

1− θ

! ε
ε−1

+
θπ̄εt
p∗t−1

⎞⎠⎤⎦
+λ3t

£
1 +Etπ̄

ε−1
t+1βθFt+1 − Ft

¤
+λ4t

∙
(1− νt)

ε

ε− 1 exp (τ t)N
1+ϕ
t p∗t (1− ψ + ψRt) + Etπ̄

ε
t+1βθKt+1 −Kt

¸
+λ5t

"
Ft

∙
1− θπ̄ε−1t

1− θ

¸ 1
1−ε

−Kt

#
}

• ‘two degree of freedom’ 7 variables, 5 equilibrium conditions
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Example #4: Optimal Monetary Policy - CGG ...

• Law of motion of technology:
At = ρAt−1 + ut.

• We only consider the case,
(1− ν)

ε

ε− 1 = 1.
• First consider the case, ψ = 0

– Conjecture: restrictions 1, 3, 4, 5 nonbinding (i.e., λ1t = λ3t = λ4t = λ5t =
0)

∗ Step 1: Optimize w.r.t. p∗t , π̄t, Nt ignoring restrictions 1, 3, 4, 5.

∗ Step 2: Solve for νt, Rt, Ft, Kt, to satisfy restrictions 1, 3, 4, 5.

– If this can be done, then the conjecture is verified.
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Example #4: Optimal Monetary Policy - CGG ...

• Simplified problem under conjecture:

max
π̄t,p∗t ,Nt

E0

∞X
t=0

βt{
Ã
logNt + log p

∗
t − exp (τ t)

N1+ϕ
t

1 + ϕ

!

+λ2t

⎡⎣ 1
p∗t
−

⎛⎝(1− θ)

Ã
1− θ (π̄t)

ε−1

1− θ

! ε
ε−1

+
θπ̄εt
p∗t−1

⎞⎠⎤⎦}
first order conditions with respect to p∗t , π̄t, Nt (after rearranging):

p∗t + βλ2,t+1θπ̄
ε
t+1 = λ2t, π̄t =

" ¡
p∗t−1

¢ε−1
1− θ + θ

¡
p∗t−1

¢ε−1
# 1

ε−1

, Nt = exp

µ
− τ t
ϕ+ 1

¶
– Substituting the solution for π̄t into the law of motion for p∗t :

p∗t =
h
(1− θ) + θ

¡
p∗t−1

¢(ε−1)i 1
(ε−1)

.
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Example #4: Optimal Monetary Policy - CGG ...

• Bottom line. Optimality under state-contingent νt implies:

p∗t =
h
(1− θ) + θ

¡
p∗t−1

¢(ε−1)i 1
(ε−1)

π̄t =
p∗t−1
p∗t

Nt = exp

µ
− τ t
1 + ϕ

¶
1− ν =

ε− 1
ε

Ct = p∗tAtNt.

• Ramsey-optimal policy is time consistent (no forward-looking constraints on
core problem).

• If ψ > 0 and νt not state-contingent must work out Ramsey solution
numerically.
(For further discussion, see Christiano-Motto-Rostagno, ‘Two Reasons Why
Money Might be Useful in Monetary Policy’, 2007 NBER WP.)
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Example #4: Optimal Monetary Policy - CGG ...

• Example - no working capital channel (ψ = 0):

θ = 0.75, ε = 2, β = 0.99, ρ = 0.5, ϕ = 1.

• In this case:
Nt = 1 + 0.45(λ1t−1 − λ1) + .06(λ3,t−1 − λ3) + 0.63(λ4,t−1 − λ4)

rt = 0.01− 0.50(λ1t−1 − λ1) + 0.10(λ3,t−1 − λ3)− 0.02(λ4,t−1 − λ4)− 0.25at−1
−0.51ut

πt = 1 + 0.07(λ1t−1 − λ1) + 0.09(λ3,t−1 − λ3) + 0.31(λ4,t−1 − λ4) + 0.25(p
∗
t−1 − 1)

λ1t = 0,

λ2,t = 3.88 + 0.82(λ1t−1 − λ1) + 1.46(λ3,t−1 − λ3) + 3.65(λ4,t−1 − λ4)

+4.13(p∗t−1 − 1)
λ3,t = 0.05(λ1t−1 − λ1) + 0.69(λ3,t−1 − λ3) + 0.12(λ4,t−1 − λ4)

λ4,t = −0.05(λ1t−1 − λ1) + 0.06(λ3,t−1 − λ3) + 0.63(λ4,t−1 − λ4)

λ5,t = 0.05(λ1t−1 − λ1)− 0.06(λ3,t−1 − λ3) + 0.12(λ4,t−1 − λ4)

λ1 = λ3 = λ4 = λ5 = 0, λ2 = 3.88

• ‘Resetting multipliers’ makes no difference: no time inconsistency problem.
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Example #4: Optimal Monetary Policy - CGG ...

• Example with ψ = 0.7 :

Nt = 1 + 0.50λ1t−1 + .03λ3,t−1 + 0.40λ4,t−1 + 0.02at−1 + 0.03ut
rt = 0.01− 0.51λ1t−1 + 0.12λ3,t−1 + 0.30λ4,t−1 − 0.24at−1 − 0.49ut
πt = 1 + 0.05λ1t−1 + 0.10λ3,t−1 + 0.31λ4,t−1 − 0.01at−1 + 0.25(p∗t−1 − 1)− 0.02ut
p∗t = 1 + .75(p∗t−1 − 1)
λ1t = −0.01λ1t−1 + 0.04λ3,t−1 + 0.44λ4,t−1 + 0.02At−1 + 0.03ut
λ2,t = 3.88 + 0.95λ1t−1 + 1.42λ3,t−1 + 3.63λ4,t−1 + 0.09At−1 + 0.18ut + 4.13(p

∗
t−1 − 1)

λ3,t = 0.01λ1t−1 + 0.70λ3,t−1 + 0.13λ4,t−1 − 0.02at−1 − 0.05ut
λ4,t = −0.01λ1t−1 + 0.05λ3,t−1 + 0.62λ4,t−1 + 0.02at−1 + 0.05ut
λ5,t = 0.015λ1t−1 − 0.05λ3,t−1 + 0.13λ4,t−1 − .02at−1 − 0.05ut

λ1 = λ3 = λ4 = λ5 = 0, λ2 = 3.88

• Properties: all multipliers respond to ut; optimal plan not time consistent;
employment and inflation respond to ut; rt drops a little less than before (it’s a
tax now); Nt falls somewhat because of the interest rate ‘tax’.
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Example #4: Optimal Monetary Policy - Clarida-Gali-Gertler Model ...

• Experiment:

– Economy is in steady state of optimal plan up to period t.

– A positive shock to technology occurs.

– Monetary authority computes optimal policy and displays it in a set of
charts.

– Redo charts one period later.
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Example #4: Optimal Monetary Policy - Clarida-Gali-Gertler Model ...

• Discussion of the results

– In the absence of a working capital channel (i.e., ψ = 0) it is optimal to cut
the interest rate, to encourage households not smooth consumption away
from what is optimal.

– In the presence of a working capital channel, (i.e., ψ > 0), the cut in the
interest rate reduces the marginal cost of labor and expands output and
employment. By reducing marginal cost, inflation drops.

– The rise in employment and fall in inflation are both costly, and so:

∗ it is optimal when ψ > 0 to cut the interest rate by less.

∗ it is optimal to manage expectations so that the incentive to cut prices in
the present is reduced.
· announce inflation close to zero in the next period
· announce relatively small interest rate drop in the next period.
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