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Overall Outline

Perturbation and Projection Methods for DSGE
Models: an Overview

Simple New Keynesian model

— Formulation and log-linear solution.

— Ramsey-optimal policy.

— Using Dynare to solve the model by log-linearization:

e Taylor principle, implications of working capital, News shocks,
monetary policy with the long rate.

Financial Frictions as in BGG
— Risk shocks and the CKM critique of intertemporal shocks.
— Dynare exercise.

Ramsey Optimal Policy, Time Consistency, Timeless
Perspective.



Perturbation and Projection
Methods for Solving DSGE Models



Outline

 ASimple Example to lllustrate the basic ideas.

— Functional form characterization of model
solution.

— Use of Projections and Perturbations.

e Neoclassical model.
— Projection methods

— Perturbation methods

 Make sense of the proposition, ‘to a first order
approximation, can replace equilibrium conditions with
linear expansion about nonstochastic steady state and
solve the resulting system using certainty equivalence’



Simple Example

Suppose that x is some exogenous variable
and that the following equation implicitly
defines y:

h(x,y) =0, forallx e X
Let the solution be defined by the ‘policy rule

g.
y = g(x)

‘Error function’
satisfying /

R(x;g) = h(x,g(x)) =0
forall x e X
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The Need to Approximate

* Finding the policy rule, g, is a big problem
outside special cases

— ‘Infinite number of unknowns (i.e., one value of g
for each possible x) in an infinite number of
equations (i.e., one equation for each possible x).’

e Two approaches:

— projection and perturbation



Projection

Find a parametric function, g(x;v), where 7 is a
vector of parameters chosen so that it imitates
the property of the exact solution, i.e., R(x;g) =0
for all x € x, as well as possible.

Choose values for 7 so that

R(x;7) = h(x,8(x;7))
is close to zero for x € X .
The method is defined by how ‘close to zero’ is

defined and by the parametric function, g(x;7),
that is used.



Projection, continued

e Spectral and finite element approximations

— Spectral functions: functions, (x;v), in which
each parameter in 7 influences g(x;y) forall x e X

example: _ _
" Y1
g(ry) = D yiHix), y = |
i=0
Yn

H;(x) = x' ~ordinary polynominal (not computationaly efficient)
Hi(x) = Ti(p(x)),
T:(z) : [-1,1] » [-1,1], i” order Chebyshev polynomial

@ L X - [_111]



Projection, continued

— Finite element approximations: functions, £(x;7)
in which each parameter in ¥ influences g(x;7)
over only a subinterval of x € X

glx;y) ?’=[ Y1 Y2 Y3 Y4 V5 Ve V7 ]
V4

\
Y2 N

o




Projection, continued
e ‘Close to zero’: collocation and Galerkin

e Collocation, for n values of x: x1,x2,...,x, € X
choose n elements of y = [ Y1 o Ya ] so that

RGxiiy) = h(x;,8(xi;7)) =0,i=1,...,n

— how you choose the grid of x’s matters...

* Galerkin, form>nvaluesof x : x;. x5,....x, € X
choose the n elements of y = [ Y1 o ¥

ijh(xf’g(xj;y)) =0,i=1,...,n
=1



Perturbation

e Projection uses the ‘global’ behavior of the functional
equation to approximate solution.

— Problem: requires finding zeros of non-linear equations.
Iterative methods for doing this are a pain.

— Advantage: can easily adapt to situations the policy rule is
not continuous or simply non-differentiable (e.g.,
occasionally binding zero lower bound on interest rate).

e Perturbation method uses local properties of
functional equation and Implicit Function/Taylor’s
theorem to approximate solution.

— Advantage: can implement it using non-iterative methods.

— Possible disadvantages:
* may require enormously high derivatives to achieve a decent
global approximation.

* Does not work when there are important non-differentiabilities
(e.g., occasionally binding zero lower bound on interest rate).



Perturbation, cnt’d

e Suppose there is a point, x* € X, where we
know the value taken on by the function, g,
that we wish to approximate:

g(x*) = g*, some x*

e Use the implicit function theorem to
approximate g in a neighborhood of x*

* Note:
R(x;g) =0forallx e X

—

RO (x; g) = %R(x;g) — Oforallj, all x € X.



Perturbation, cnt’d

e Differentiate R with respect to xand evaluate
the result at x*:

ROG) = L g()lerr = et ,g7) + hae g)g () = 0

hl(X*ig*)
hZ(X*’g*)

> g (") = -
Do it again!

2
ROG) = “Loh(r, g0l = hus,8) + 2hia (', g)g ()

hao(x*,2*)[g' (x*)]° + ha(x*,g*)g" (x*).

— Solve this linearly for g" (x*).



Perturbation, cnt’d

* Preceding calculations deliver (assuming
enough differentiability, appropriate
invertibility, a high tolerance for painful

notation!), recursively:
g'(x*),g"(x*),...,g"(x*)

 Then, have the following Taylor’s series
approximation:

g(x) = g(x)
gx) =g"+g'(x") x (x —x*)

+ 5" () x (x—=x) 4+ (67) x (x - x7)"



Perturbation, cnt’d

e Check....
e Study the graph of

R(x; )

—over X € X to verify that it is everywhere close
to zero (or, at least in the region of interest).



Example of Implicit Function Theorem

, hi(x*,g*) x*
*) — _ = —=2— (h, had better not be zero!
g0 = ey — g )




Neoclassical Growth Model

e Objective:
& |
Eo D Buen), ule) = “—
=0

e Constraints:
Cy + eXp(kH_]_) Sf(kt,at), [ = 0,1,2,....

a; = pPpdg1 + &;.

flky,ar) = exp(ak:)exp(a;) + (1 —06)exp(k;).



Efficiency Condition

Et[l/l/ (}(kz, at) — eXp(kH]_ 5)

Cirl period #+1 marginal product of capital
— ﬁu/ (f(kHl, pa; + 3t+1) — exp(kt+2)> fK(kHl; pa; + 5t+1) ] = 0.

* Here, k., a; ~given numbers
€1~ 1id, mean zero variance V,
time ¢ choice variable, k.1

e Convenient to suppose the model is the limit
of a sequence of models, ¢ —» 1, indexed by o

gu1~0%Ve, o = 1.



Solution
e A policy rule,
kH_]_ = g(kt,az,ﬁ).

e With the property:

R(k; a,,0,2) = Et{u’<],‘(kt,at) — eXIS[g(kt,at,G)j)
. \

kirl a1 B kirl Al ]
_ﬂu, g(kt,at;a),bat+68t+£ _exp g g(khat,a),bat"'agﬁi;g

kt+l Al
XfK(é(kt,at,G),bat + th+£>} = 0,

i for a” dy, kt andG = 1.



Projection Methods

e Let
g(khah 61 7)

— be a function with finite parameters (could be either
spectral or finite element, as before).

 Choose parameters,y, to make

R(kl"ahg;g)

— as close to zero as possible, over a range of values of
the state.

— use Galerkin or Collocation.



Occasionally Binding Constraints

e Suppose we add the non-negativity constraint on
investment:

exp(g(ks,ar,0)) — (1 —0)exp(k;) >0

e Express problem in Lagrangian form and optimum is
characterized in terms of equality conditions with a
multiplier and with a complementary slackness condition
associated with the constraint.

e Conceptually straightforward to apply preceding method.
For details, see Christiano-Fisher, ‘Algorithms for Solving
Dynamic Models with Occasionally Binding Constraints’,
2000, Journal of Economic Dynamics and Control.

— This paper describes alternative strategies, based on

parameterizing the expectation function, that may be easier,
when constraints are occasionally binding constraints.



Perturbation Approach

e Straightforward application of the perturbation approach, as in the simple
example, requires knowing the value taken on by the policy rule at a point.

e The overwhelming majority of models used in macro do have this
property.

— In these models, can compute non-stochastic steady state without any
knowledge of the policy rule, g.

— Non-stochastic steady state is k*such that

a=0 (nonstochastic steady state in no uncertainty case) o=0 (no uncertainty)
f_/R f_/R

k=gl &, 0 0

1

T ke iy |




Perturbation

* Error function:

R(k: a:,0,2) = Et{u’<}(kt,at) - eX[S[g(kt,at,G)j>

Cr+1

— Pu’ }‘(g(kt, a:,0),pa; +o&n1) —explg(glks, a:,0), pas + o€441, G)j

XfK(g(khat,G);Pat + Ggl‘+1)} — O’

— for all values of &;,a;,o.

e So, all order derivatives of R with respect to its
arguments are zero (assuming they exist!).



Four (Easy to Show) Results About
Perturbations

* Taylor series expansion of policy rule:

linear component of policy rule

g(ks,a;,0) =~ i+ gi(ky— k) + gqa, + goa\

second and higher order terms

A\

N\

N

+5 [gu (ke — k)2 + Gua? + 9560%] + gra(ks — K)a; + gio (ki — K)o + Gusa,o +...

N

- g5 = 0: to a first order approximation, ‘certainty equivalence’

— All terms found by solving linear equations, except coefficient on past
endogenous variable,&k% ,which requires solving for eigenvalues

— To second order approximation: slope terms certainty equivalent —

ko — aoc — 0

— Quadratic, higher order terms computed recursively.



First Order Perturbation

 Working out the following derivatives and
evaluating at &k = k*,a;, =0 =0

Rk(kt,at;G;g) — Ra(kt,aha;g) — RG(khahG;g) — O

‘problematic term’ Source of certainty equivalence

° |mp|ie53 \ In linear approximation

Ri = u"(fi — e2gr) — Pu'frrgi — Pu" (figr — €322 )k =

R, = ””(fa —e8g,) — ﬂu/[kaga + fkap] = /(fkga +fap —e8[grga + gup])fk =0

Ry, = —[u'e® + Bu" (fi — efgi)fx]gs = 0



Technical notes for following slide

u" (fi — e8gr) — Pu'fxrgr — Pu" (figr — e2g5)fk = 0

ﬁ(fk esgy) — u/f// gi — (figk — e2g2)fx = 0

Ff el

u' ka 2 _
ﬁ eng |: ﬁ " u// eng _gk + 8k = 0
%_[1+ﬂ u” ggI;{K gi+8i =0

e Simplify this further using:

] k+eggkf1< =

fx = aK*exp(a) + (1 - 5), K = exp(k)
= aexpl(a—1)k+a]+ (1-9)
fr = aexplak+a] + (1 - 6)exp(k) = fxes
fxr = ala —1)exp[(a — 1)k + a]
Jkk = a(a —1)K*?exp(a) = a(a — 1)exp[(a — 2)k + a] = free™®

e to obtain polynomial on next slide.



First Order, cont’d

Rewriting R; = Oterm:

%_[1+ % T Zl//J;flf]gk‘Fgl%:O
1

There are two solutions, 0 < gx <1, g > =

— Theory (see Stokey-Lucas) tells us to pick the smaller
one.

— In general, could be more than one eigenvalue less
than unity: multiple solutions.

Conditional on solution to €+ £« solved for
linearly using R, = 0 equation.

These results all generalize to multidimensional
case




Numerical Example

e Parameters taken from Prescott (1986):

y =2(20), a = 0.36, 6 = 0.02, p = 0.95, V, = 0.01°

Second order approximation:

3.88 0.98 (0.996) 0.06 (0.07) 0
g(ki,as1,€4,0) :? + ’é? (ke — k™) + ’_é? a; +’§? o
0.014 (0.00017) 0.067 (0.079) 0.000024 (0.00068) f_}\
+%[ 2 (k=K + Ga a2+ Zoo o2 ]
~0.035 (~0.028) 0 0

+ Zra (ki —k)a; + gro (ki —k)o+ g4 a:o



Conclusion

 For modest US-sized fluctuations and for
aggregate quantities, it is reasonable to work
with first order perturbations.

e First order perturbation: linearize (or, log-
linearize) equilibrium conditions around non-
stochastic steady state and solve the resulting
system.

— This approach assumes ‘certainty equivalence’. Ok, as
a first order approximation.



List of endogenous variables determined at t

Solution by Linearization
* (log) Linearized Equilibrium Conditions:

E/oozm1 + a1z, + a2z 1 + Posy1 + P1s:] =0

e Posit Linear Solution:
St%t = 0.
zi = Aziq + Bsy Exogenous shocks

e To satisfy equil conditions, A and B must:

oA’ +a1A+al =0, F=(Bo+aoB)P+[B1+ (aod+0a1)B] =0

e |f there is exactly one A with eigenvalues less
than unity in absolute value, that’s the solution.
Otherwise, multiple solutions.

 Conditional on A, solve linear system for B.





