Solution Methods for DSGE Models and Applications using Linearization

Lawrence J. Christiano

Overall Outline

- Perturbation and Projection Methods for DSGE Models: an Overview
- Simple New Keynesian model
 - Formulation and log-linear solution.
 - Ramsey-optimal policy.
 - Using Dynare to solve the model by log-linearization:
 - Taylor principle, implications of working capital, News shocks, monetary policy with the long rate.
- Financial Frictions as in BGG
 - Risk shocks and the CKM critique of intertemporal shocks.
 - Dynare exercise.
- Ramsey Optimal Policy, Time Consistency, Timeless Perspective.

Perturbation and Projection Methods for Solving DSGE Models

Lawrence J. Christiano

Outline

- A Simple Example to Illustrate the basic ideas.
 - Functional form characterization of model solution.
 - Use of Projections and Perturbations.
- Neoclassical model.
 - Projection methods
 - Perturbation methods
 - Make sense of the proposition, 'to a first order approximation, can replace equilibrium conditions with linear expansion about nonstochastic steady state and solve the resulting system using certainty equivalence'

Simple Example

 Suppose that x is some exogenous variable and that the following equation implicitly defines y:

$$h(x,y) = 0$$
, for all $x \in X$

Let the solution be defined by the 'policy rule',
 g:

$$y = g(x)$$
 'Error function'

satisfying

$$R(x;g) \equiv h(x,g(x)) = 0$$

• for all $x \in X$

The Need to Approximate

• Finding the policy rule, g, is a big problem outside special cases

- 'Infinite number of unknowns (i.e., one value of g for each possible x) in an infinite number of equations (i.e., one equation for each possible x).'

• Two approaches:

projection and perturbation

Projection

- Find a parametric function, $\hat{g}(x; \gamma)$, where γ is a vector of parameters chosen so that it imitates the property of the exact solution, i.e., R(x;g) = 0 for all $x \in X$, as well as possible.
- Choose values for γ so that

$$\hat{R}(x; \gamma) = h(x, \hat{g}(x; \gamma))$$

- is close to zero for $x \in X$.
- The method is defined by how 'close to zero' is defined and by the parametric function, $\hat{g}(x;\gamma)$, that is used.

Projection, continued

- Spectral and finite element approximations
 - **Spectral functions**: functions, $\hat{g}(x; \gamma)$, in which each parameter in γ influences $\hat{g}(x; \gamma)$ for all $x \in X$ example:

$$\hat{g}(x;\gamma) = \sum_{i=0}^{n} \gamma_i H_i(x), \ \gamma = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{bmatrix}$$

 $H_i(x) = x^i$ ~ordinary polynominal (not computationally efficient)

$$H_i(x) = T_i(\varphi(x)),$$

 $T_i(z): [-1,1] \rightarrow [-1,1], i^{th}$ order Chebyshev polynomial

$$\varphi: X \rightarrow [-1,1]$$

Projection, continued

– Finite element approximations: functions, $\hat{g}(x;\gamma)$, in which each parameter in γ influences $\hat{g}(x;\gamma)$ over only a subinterval of $x \in X$

Projection, continued

- 'Close to zero': collocation and Galerkin
- **Collocation**, for *n* values of $x: x_1, x_2, ..., x_n \in X$ choose *n* elements of $\gamma = [\gamma_1 \cdots \gamma_n]$ so that

$$\hat{R}(x_i;\gamma) = h(x_i,\hat{g}(x_i;\gamma)) = 0, i = 1,\ldots,n$$

- how you choose the grid of x's matters...
- **Galerkin**, for m > n values of $x : x_1, x_2, ..., x_m \in X$ choose the n elements of $\gamma = \begin{bmatrix} \gamma_1 & \cdots & \gamma_n \end{bmatrix}$

$$\sum_{j=1}^{m} w_{j}^{i} h(x_{j}, \hat{g}(x_{j}; \gamma)) = 0, i = 1, ..., n$$

Perturbation

- Projection uses the 'global' behavior of the functional equation to approximate solution.
 - Problem: requires finding zeros of non-linear equations.
 Iterative methods for doing this are a pain.
 - Advantage: can easily adapt to situations the policy rule is not continuous or simply non-differentiable (e.g., occasionally binding zero lower bound on interest rate).
- Perturbation method uses local properties of functional equation and Implicit Function/Taylor's theorem to approximate solution.
 - Advantage: can implement it using non-iterative methods.
 - Possible disadvantages:
 - may require enormously high derivatives to achieve a decent global approximation.
 - Does not work when there are important non-differentiabilities (e.g., occasionally binding zero lower bound on interest rate).

• Suppose there is a point, $x^* \in X$, where we know the value taken on by the function, g, that we wish to approximate:

$$g(x^*) = g^*$$
, some x^*

- Use the implicit function theorem to approximate g in a neighborhood of x^*
- Note:

$$R(x;g) = 0$$
 for all $x \in X$

 \rightarrow

$$R^{(j)}(x;g) \equiv \frac{d^j}{dx^j}R(x;g) = 0 \text{ for all } j, \text{ all } x \in X.$$

 Differentiate R with respect to x and evaluate the result at x*:

$$R^{(1)}(x^*) = \frac{d}{dx}h(x,g(x))|_{x=x^*} = h_1(x^*,g^*) + h_2(x^*,g^*)g'(x^*) = 0$$

$$\rightarrow g'(x^*) = -\frac{h_1(x^*, g^*)}{h_2(x^*, g^*)}$$

Do it again!

$$R^{(2)}(x^*) = \frac{d^2}{dx^2} h(x, g(x))|_{x=x^*} = h_{11}(x^*, g^*) + 2h_{12}(x^*, g^*)g'(x^*)$$
$$h_{22}(x^*, g^*)[g'(x^*)]^2 + h_2(x^*, g^*)g''(x^*).$$

 \rightarrow Solve this linearly for $g''(x^*)$.

 Preceding calculations deliver (assuming enough differentiability, appropriate invertibility, a high tolerance for painful notation!), recursively:

$$g'(x^*), g''(x^*), \dots, g^{(n)}(x^*)$$

• Then, have the following Taylor's series approximation:

$$g(x) \approx \hat{g}(x)$$

$$\hat{g}(x) = g^* + g'(x^*) \times (x - x^*)$$

$$+ \frac{1}{2}g''(x^*) \times (x - x^*)^2 + \dots + \frac{1}{n!}g^{(n)}(x^*) \times (x - x^*)^n$$

- Check....
- Study the graph of

$$R(x;\hat{g})$$

- over $x \in X$ to verify that it is everywhere close to zero (or, at least in the region of interest).

Example of Implicit Function Theorem

Neoclassical Growth Model

Objective:

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t), \ u(c_t) = \frac{c_t^{1-\gamma} - 1}{1 - \gamma}$$

Constraints:

$$c_t + \exp(k_{t+1}) \le f(k_t, a_t), t = 0, 1, 2, \dots$$

$$a_t = \rho a_{t-1} + \varepsilon_t$$
.

$$f(k_t, a_t) = \exp(\alpha k_t) \exp(a_t) + (1 - \delta) \exp(k_t).$$

Efficiency Condition

$$E_{t}\left[u'\left(\overbrace{f(k_{t},a_{t})-\exp(k_{t+1})}^{c_{t+1}}\right)\right]$$

$$-\beta u'\left(\overbrace{f(k_{t+1},\rho a_{t}+\varepsilon_{t+1})-\exp(k_{t+2})}^{c_{t+1}}\right) \qquad f_{K}(k_{t+1},\rho a_{t}+\varepsilon_{t+1}) \qquad] = 0.$$

- Here, k_t, a_t ~given numbers $\varepsilon_{t+1} \sim iid$, mean zero variance V_{ε} time t choice variable, k_{t+1}
- Convenient to suppose the model is the limit of a sequence of models, $\sigma \to 1$, indexed by σ

$$\varepsilon_{t+1} \sim \sigma^2 V_{\varepsilon}, \ \sigma = 1.$$

Solution

A policy rule,

$$k_{t+1} = g(k_t, a_t, \sigma).$$

With the property:

$$R(k_{t}, a_{t}, \sigma; g) = E_{t} \left\{ u' \left(\overbrace{f(k_{t}, a_{t}) - \exp[g(k_{t}, a_{t}, \sigma)]}^{c_{t}} \right) - \exp \left[g\left(\overbrace{g(k_{t}, a_{t}, \sigma)}^{k_{t+1}}, \overbrace{\rho a_{t} + \sigma \varepsilon_{t+1}}^{a_{t+1}} \right) - \exp \left[g\left(\overbrace{g(k_{t}, a_{t}, \sigma)}^{k_{t+1}}, \overbrace{\rho a_{t} + \sigma \varepsilon_{t+1}}^{a_{t+1}}, \sigma \right) \right] \right)$$

$$\times f_{K}\left(\overbrace{g(k_{t},a_{t},\sigma)}^{k_{t+1}},\overbrace{\rho a_{t}+\sigma \varepsilon_{t+1}}^{a_{t+1}}\right)\}=0,$$

• for all a_t , k_t and $\sigma = 1$.

Projection Methods

Let

$$\hat{g}(k_t, a_t, \sigma; \gamma)$$

- be a function with finite parameters (could be either spectral or finite element, as before).
- Choose parameters, γ , to make

$$R(k_t, a_t, \sigma; \hat{g})$$

- as close to zero as possible, over a range of values of the state.
- use Galerkin or Collocation.

Occasionally Binding Constraints

 Suppose we add the non-negativity constraint on investment:

$$\exp(g(k_t, a_t, \sigma)) - (1 - \delta) \exp(k_t) \ge 0$$

- Express problem in Lagrangian form and optimum is characterized in terms of equality conditions with a multiplier and with a complementary slackness condition associated with the constraint.
- Conceptually straightforward to apply preceding method. For details, see Christiano-Fisher, 'Algorithms for Solving Dynamic Models with Occasionally Binding Constraints', 2000, Journal of Economic Dynamics and Control.
 - This paper describes alternative strategies, based on parameterizing the expectation function, that may be easier, when constraints are occasionally binding constraints.

Perturbation Approach

- Straightforward application of the perturbation approach, as in the simple example, requires knowing the value taken on by the policy rule at a point.
- The overwhelming majority of models used in macro do have this property.
 - In these models, can compute non-stochastic steady state without any knowledge of the policy rule, g.
 - Non-stochastic steady state is k^* such that

$$k^* = g \left(k^*, \frac{a=0 \text{ (nonstochastic steady state in no uncertainty case)}}{0}, \frac{\sigma=0 \text{ (no uncertainty)}}{0} \right)$$

- and
$$k^* = \log \left\{ \left[\frac{\alpha \beta}{1 - (1 - \delta)\beta} \right]^{\frac{1}{1 - \alpha}} \right\}.$$

Perturbation

• Error function:

$$R(k_t, a_t, \sigma; g) \equiv E_t \{ u' \left(\underbrace{f(k_t, a_t) - \exp[g(k_t, a_t, \sigma)]}_{c_t} \right)$$

$$-\beta u' \left[\overbrace{f(g(k_t, a_t, \sigma), \rho a_t + \sigma \varepsilon_{t+1}) - \exp[g(g(k_t, a_t, \sigma), \rho a_t + \sigma \varepsilon_{t+1}, \sigma)]}^{c_{t+1}} \right] \times f_K(g(k_t, a_t, \sigma), \rho a_t + \sigma \varepsilon_{t+1}) \} = 0,$$

- for all values of k_t, a_t, σ .
- So, all order derivatives of *R* with respect to its arguments are zero (assuming they exist!).

Four (Easy to Show) Results About Perturbations

Taylor series expansion of policy rule:

 $g(k_t, a_t, \sigma) \simeq \underbrace{k + g_k(k_t - k) + g_a a_t + g_\sigma \sigma}^{\text{linear component of policy rule}}$

second and higher order terms

$$+\frac{1}{2}[g_{kk}(k_t-k)^2+g_{aa}a_t^2+g_{\sigma\sigma}\sigma^2]+g_{ka}(k_t-k)a_t+g_{k\sigma}(k_t-k)\sigma+g_{a\sigma}a_t\sigma+...$$

- $-g_{\sigma}=0$: to a first order approximation, 'certainty equivalence'
- All terms found by solving linear equations, except coefficient on past endogenous variable, g_k , which requires solving for eigenvalues
- To second order approximation: slope terms certainty equivalent –

$$g_{k\sigma}=g_{a\sigma}=0$$

Quadratic, higher order terms computed recursively.

First Order Perturbation

• Working out the following derivatives and evaluating at $k_t = k^*, a_t = \sigma = 0$

$$R_k(k_t, a_t, \sigma; g) = R_a(k_t, a_t, \sigma; g) = R_\sigma(k_t, a_t, \sigma; g) = 0$$

• Implies:

'problematic term'

Source of certainty equivalence In linear approximation

$$R_k = u''(f_k - e^g g_k) - \beta u' f_{Kk} g_k - \beta u''(f_k g_k - e^g g_k^2) f_K = 0$$

$$R_a = u''(f_a - e^g g_a) - \beta u'[f_{Kk}g_a + f_{Ka}\rho] - \beta u''(f_k g_a + f_a\rho - e^g[g_k g_a + g_a\rho])f_K = 0$$

$$R_{\sigma} = -\left[u'e^{g} + \beta u''(f_{k} - e^{g}g_{k})f_{K}\right]g_{\sigma} = 0$$

Technical notes for following slide

$$u''(f_{k} - e^{g}g_{k}) - \beta u'f_{Kk}g_{k} - \beta u''(f_{k}g_{k} - e^{g}g_{k}^{2})f_{K} = 0$$

$$\frac{1}{\beta}(f_{k} - e^{g}g_{k}) - u'\frac{f_{Kk}}{u''}g_{k} - (f_{k}g_{k} - e^{g}g_{k}^{2})f_{K} = 0$$

$$\frac{1}{\beta}f_{k} - \left[\frac{1}{\beta}e^{g} + u'\frac{f_{Kk}}{u''} + f_{k}f_{K}\right]g_{k} + e^{g}g_{k}^{2}f_{K} = 0$$

$$\frac{1}{\beta}\frac{f_{k}}{e^{g}f_{K}} - \left[\frac{1}{\beta f_{K}} + \frac{u'}{u''}\frac{f_{Kk}}{e^{g}f_{K}} + \frac{f_{k}}{e^{g}}\right]g_{k} + g_{k}^{2} = 0$$

$$\frac{1}{\beta} - \left[1 + \frac{1}{\beta} + \frac{u'}{u''}\frac{f_{Kk}}{e^{g}f_{K}}\right]g_{k} + g_{k}^{2} = 0$$

Simplify this further using:

$$f_{K} = \alpha K^{\alpha - 1} \exp(\alpha) + (1 - \delta), K = \exp(k)$$

$$= \alpha \exp[(\alpha - 1)k + a] + (1 - \delta)$$

$$f_{k} = \alpha \exp[\alpha k + a] + (1 - \delta) \exp(k) = f_{K}e^{g}$$

$$f_{Kk} = \alpha(\alpha - 1) \exp[(\alpha - 1)k + a]$$

$$f_{KK} = \alpha(\alpha - 1)K^{\alpha - 2} \exp(\alpha) = \alpha(\alpha - 1) \exp[(\alpha - 2)k + a] = f_{Kk}e^{-g}$$

to obtain polynomial on next slide.

First Order, cont'd

• Rewriting $R_k = 0$ term:

$$\frac{1}{\beta} - \left[1 + \frac{1}{\beta} + \frac{u'}{u''} \frac{f_{KK}}{f_K} \right] g_k + g_k^2 = 0$$

- There are two solutions, $0 < g_k < 1, g_k > \frac{1}{B}$
 - Theory (see Stokey-Lucas) tells us to pick the smaller one.
 - In general, could be more than one eigenvalue less than unity: multiple solutions.
- Conditional on solution to g_k , g_a solved for linearly using $R_a = 0$ equation.
- These results all generalize to multidimensional case

Numerical Example

Parameters taken from Prescott (1986):

$$\gamma = 2$$
 (20), $\alpha = 0.36$, $\delta = 0.02$, $\rho = 0.95$, $V_e = 0.01^2$

Second order approximation:

$$\hat{g}(k_{t}, a_{t-1}, \varepsilon_{t}, \sigma) = k^{*} + g_{k} (k_{t} - k^{*}) + g_{a} a_{t} + g_{\sigma} \sigma$$

$$0.014 (0.00017) 0.067 (0.079) 0.000024 (0.00068)$$

$$+ \frac{1}{2} [g_{kk} (k_{t} - k)^{2} + g_{aa} a_{t}^{2} + g_{\sigma} \sigma$$

$$0.035 (-0.028)$$

$$0$$

$$(k_{t} - k) a_{t} + g_{k\sigma} (k_{t} - k) \sigma + g_{a\sigma} a_{t} \sigma$$

Conclusion

- For modest US-sized fluctuations and for aggregate quantities, it is reasonable to work with first order perturbations.
- First order perturbation: linearize (or, loglinearize) equilibrium conditions around nonstochastic steady state and solve the resulting system.
 - This approach assumes 'certainty equivalence'. Ok, as a first order approximation.

Solution by Linearization

• (log) Linearized Equilibrium Conditions:

$$E_t[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0$$

Posit Linear Solution:

$$z_t = A z_{t-1} + B s_t$$

$$z_t = Az_{t-1} + Bs_t$$
 $s_t - Ps_{t-1} - \epsilon_t = 0.$ Exogenous shocks

• To satisfy equil conditions, A and B must:

$$\alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0, \quad F = (\beta_0 + \alpha_0 B)P + [\beta_1 + (\alpha_0 A + \alpha_1)B] = 0$$

- If there is exactly one A with eigenvalues less than unity in absolute value, that's the solution. Otherwise, multiple solutions.
- Conditional on A, solve linear system for B.