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Abstract

We study why the number of firms in the dynamic random access memory semicon-
ductor industry is drastically increasing throughout early memory generations, whereas
sharply decreasing for recent generations. This fact is even more surprising since market
demand steadily increased over time whereas the pace of innovation continously decreased
over time. We estimate a fully dynamic oligopoly model accounting for entry, exit, and
learning by doing. We account for serially correlated observed and unobserved state vari-
ables and apply the recent two-step estimator by Bajari, Benkard and Levin (2007) using
quarterly firm-level data from 1974 to 2004. We find that the interdependence between
the increase in market demand and rapidly increasing sunks costs associated with a higher
pace of innovation nicely explains the change in market structure. We also confirm that
accounting for serially correlated unobservables is a crucial aspect to correct for. In our
case, the instrumental variable estimator with a lagged dependent variable performs best
when accounting for a serially correlated unobserved state variable.
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1 Introduction

Many policy debates target on evaluating the competitiveness in new product industries, such as

the the semiconductor, or the dynamic random access memory (DRAM) industry.1 The DRAM

industry is considered a new product industry which experiences a high pace of innovation that

leads to bringing new product generations on the market, and high entry and exit rates.

Entry and exit may cause considerable consequences on market performance. Entry may

increase the efficiency and may also accelerate the competitive pressure and pace of innovation

in the market having a positive effect on efficiency and market performance. A higher innovation

rate may also drive firms out of the market fewer survivors will lead to an increased market

concentration, a lower degree of competition and may reduce the innovation rate. On the

other hand, exit may also lead to efficiency gains, as the output formerly produced by the

extinguished firms will be reallocated to the surviving and more efficient firms, see also Salant

and Shaffer (1999). Hence, the pace of innovation and the turnover of firms is an important

topic to explore from a policy point of view.

The number of firms increased from 15 firms in the 4K DRAM generation in 1978 to about

24 firms in the 4MB generation in the mid 1990’s. Afterwards, the number of firms sharply

declined to 15 firms in the 128 MB in 2001, and declined even further to 11 firms for the 256

MB generation in 2004.2 The question is why is the DRAM industry characterized by this

inverse U-shape in number of firms over different generations?

The U-shape in the number of firms is especially surprising because of two reasons. First, it

is well known that the DRAM industry is characterized by an increasing pace of innovation over

time. The invention of a new technology is a necessary condition for independently introducing a

new chip generation and, hence, part of the entry or sunk cost. New electronic products imposed

higher requirements towards the capacity of DRAM chips and new DRAM technologies became

more complex over time, requiring higher R&D investments. For example, as shown in Table

1a, the number of patent applications in the DRAM industry increased from 701 in 1989 to

2,390 in 1997. The usage of simple patent counts may roughly indicate the increasing pace of

innovation. However, it is controversial whether patent counts are good proxies for innovation

and it is even less clear to what extent patent counts will approximate generation-specific R&D

investments and entry or sunk costs. Very little is known about the entry or sunk cost of a new

1Dynamic Random Access Memories are components within the semiconductor industry. For more informa-

tion on the industry, see the Industry Description.
2Note that the 128 MB and the 256 MB DRAM generations passed the maximum of industry production

at the time periods that we are refering to. This would approximate the maximum number of firms in these

generations, as there is not much more entry occuring afterwards.
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generation, e.g. there a no generation-specific R&D investments reported. Using patent counts

as a proxy for investment costs is controversial in iteself and would also be problematic since

we would not know what lag strcture we had to assume.

Few sources report that the establishing costs of a plant and the evolution of the innovation

cost for generations over time. As shown in Table 1b, a plant with a capacity of 30,000 chips

per month rose from US-$ 1/2 billion in 1985 to US-$ 2.5 billion in 1999, and to about US-$

5 billion in 2007. The problem with using those costs is similar to using production costs:

they are rarely observed and may not be reliable for accounting reasons. Consequently, the

first surprising fact is that the increasing pace of innovation may explain the recent declining

number of firms because firms may not be able to generate enough profits in order to be able to

reinvest those in the development of future technologies. However, it rather conflicts the fact

that the number of firms increased in the early generations even though the R&D requirements

increased.

The second reason why a U-shape in the number of firms is a surprising observation is given

by the fact that many downstream industries permanently relied on DRAMs as inputs for

electronic devices such as cell phones, computers, and video games, among many other devices.

Whereas the ongoing growth in demand for DRAMs explains the increasing number of DRAMs

firms for early generations very well, it is not as straightforward to find an explanation for the

decreasing number of firms for more recent generations.

Recent literature emphasizes the interdependence between those factors, in order to evaluate

the competitiveness in those markets. Various models have been proposed that focus on the

interdependence between innovation, entry, and exit, see also Audretsch and Klepper (2000)

and the literature cited therein for a nice overview in this area. Geroski (1996) distills a

series of “stylized facts and results” from the empirical literature on entry. He concludes that

entry is less a mechanism for keeping prices down through competitive pressure and more

a mechanism for bringing about change associated with innovation. Moreover, it has been

shown that exit rates are higher in more innovative industries. Katz (2007) also highlights

the relevance to distinguish between short run and long run effects on market structure and

therefore strengthens the importance of accounting for the interdependence of those aspects.

Hence we are also interested in capturing and evaluating the interdependence of those effects

on market structure.

We are interested in evaluating to what extent demand conditions, increasing sunk or entry

costs and a higher pace of innovation drive entry and exit in the market. We find that growth

in market demand and sunk costs increased over different generations. The demand increased

by 3% from 1976 until late 90s and reducded to 1% afterwards. Our sunk cost estimates seem
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to be quite reliable as they are getting close to the reported establishment costs over different

generations, see also Table 1b. The sunk costs were increasing over time. To summarize, our

results show that the growth in demand dominates the growth in sunk entry cost up until the

mid 1990’s. Consequently, firms entered the DRAM market. After the mid 1990’s, however,

sunk costs dominated the growth in market demand. Since the losses from increasing sunk

costs dominates the benefits from diminishing growth rates. Hence, the inverse U-shape in the

industry can be explained by the interdependence between the diminishing growth in market

demand and the increase in sunk costs.

Since we target on the evolution of one market over time, the analysis of entry and exit

requires a dynamic model in which sunk costs play an important element.3 One main difficulty

in answering these questions is given by the fact that generation-specific R&D investments or

entry costs are either rarely available, or not reliable. The question arises, how we can gain

information on the change of sunk costs over time without having appropriate data? Even if

we considered sunk costs to be exclusively determined by innovation, and even if we assumed

sunk costs would perfectly be correlated with patent information, we would still face problems

such as, how many years we had to lag the patent data, and how to appropriately transfers the

patent informatoin into a monetary value.

The main contribution of our study is the estimation of sunk cost in a fully dynamic oligopoly

model. We formulate a dynamic game in the tradition of Ericson and Pakes (1995) in which

forward looking firms make entry, exit and production decisions and maximize their expected

discounted sum of profits over the life cycle. We infer the entry or sunk costs from firms’

equilibrium behavior. As our dataset consists of discrete as well as continous information,

we estimate this model using the two step estimator by Bajari, Benkard, and Levin (2007),

in which we implement an additional serially correlated unobserved state variable, e.g. firm-

specific productivities.4 In the first step, the policy functions, such as entry, exit and production

will be estimated. In the second step we estimate the structural parameters such as the sunk

costs.5

3Pioneering literature on entry and exit applied static approaches in order to evaluate the number of firms

that different markets can hold depending on their market sizes and fixed costs, see e.g. Bresnahan and Reiss

(1989, 1990a,b, 1991), Seim (2006), Asplund and Nocke (2006) and Waterson and Toivanen (2005).
4Note that we are interested in analyzing the competitive degree in the DRAM market and would like

to estimate the entry and exit costs in a dynamic model allowing for observed and unobserved serially state

variables. Examining responses to policy or environmental change, would be an interesting task as well, but

goes beyond the scope of the paper.
5One strand of literature applied dynamic models that require to solve for Markov Perfect Nash Equilibria.

Prominent examples that used the Pakes and McGuire (1994) algorithm are Benkard (2004), Gowrisankaran and
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It is well known that learning by doing is an important phenomenon in the semiconductor

industry, see e.g. Gruber (1996), Irwin and Klenow (1994), Siebert (2007), and Zulehner (2003).

Firms learn through their experience in producing semiconductor wafers. Through repetitions

and fine tuning of production processes, they are able to lower manufacturing costs. Past

accumulated output is usually used to proxy firms experience.6 It is assumed that firms slide

down the same (industry) learning curve which illustrates efficiency effects that firms achieve in

the long run through learning by doing. Hence, depending on every firms’ past experience they

are at different locations on the industry learning curve. Production enters firms’ costs through

experience and, therefore, becomes a state variable. We need to be aware of the fact that firms

production has a contemporaneous impact of prices and profits, as well as an intertemporal

impact on firms profits through their costs. Quantities and prices are not solely determined

in static equilibrium, but also through intertemporal production plans. This makes it difficult

to separately estimate firms’ static profits from their continuation values. Since firm-level

production is observed in our dataset it enters our model as an observed state variable.

However, we also want to account for firm specific productivities that may describe potential

short run deviations from the common industry learning curve. Those firm-specific deviations

could be occuring through shocks in the economy that firms may handle differently depending on

their firm-specific productivities. Firm-specific productivities are stemming from the fact that

firms have different capabilities to learn. They may occur e.g. through differences in managerial

abilities, technological (absorptive) capacities, innovation ability, organizational structure, or

strategic alliances.7 Most importantly, they have an impact on firms costs, production decisions

Town (1997) and Pesendorfer (2003). Solving for Markov Perfect Nash Equilibria, however, are computational

very complex as the continuation values need to be calculated for different parameter values using a nested fixed

point algorithm. Therefore, the algorithm is very restricted with regard to the number of states and players.

Very recent studies focus on reducing the computational burden in dynamic games by estimating the con-

tinuation values and apply a two step algorithm. In the first stage a policy function is estimated and in the

second stage the structural parameters will be recovered, see Aguirregabiria and Mira (2007), Bajari, Benkard

and Levin (2007), Pakes, Ostrovsky and Berry (2006), Pesendorfer and Schmidt-Dengler (2006). For further

discussion and an excellent description of the different methods, see also Ackerberg, Berry, Benkard and Pakes

(2005). As of now there are only few studies that estimate a fully dynamic oligopoly model applying a two-step

algorithm, exceptions are Bersteanu and Ellickson (2005), Collard-Wexler (2005), Gowrisankaran, Lucarelli,

Schmidt-Dengler, and Town (2008), Macieira (2006), Ryan (2006), and Sweeting (2006). One common feature

in those studies is that state variables are commonly observed by the players and the econometrician. However,

very little is known about the implementation of additional unobserved state variables.
6note that for some industries such as the aircraft, or biotechnology industry the learning process might

represent forgetting, see Bendkard and Argote. However, since the semiconductor industry is reprensented by

cummulative innovation process and short life cycles, we abstract for forgetting.
7We could also interpret the LBD effects as long run or more persistent efficiency effects which reduce
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and payoffs and therefore present a state variable. Since those firm-specific productivities are

the outcome of firms investment in their capabilites, they should be allowed to vary over time.

Firms that have been more productive in the past are more likely to be more productive today.

Moreover, empirical studies frequently face the problem that firm-specific productivities are

unobserved. Hence, we need to account for the firm specific productivity to be a serially

correlated state variable.

As firm-specific productivities determine production decisions they may cause a simultaneity

bias, as the contemporaneous correlation between the firm-level productivity and other regres-

sors may cause a simultaneity bias. Different alternatives have been suggested to account for

the simultaneity bias. Prominent studies in the production function literature account for time

variant firm-specific productivity, or serially correlated unobserved state variables, by apply-

ing a proxy variable approach, see e.g. Olley and Pakes (1996), Levinsohn and Petrin (2003),

Caves, Frazer and Ackerberg (2005) and Wooldridge (2005).8 For example, Olley and Pakes

(1996) assume that productivity is private information which is serially correlated and evolves

over time according to an exogenous Markov Process. Under the assumption that investment

is increasing in productivity, they use investment as a proxy for productivity. Their proxy

controls for the part of the error term correlated with the endogenous regressors by absorbing

any variation that is possibly related to the productivity term. They apply a semiparamen-

tric estimation procedure using a polynomial series estimator in investment and capital. The

problem with applying a proxy variable approach is that it is not easy to find appropriate or

sufficient data in order to appropriately proxy for the firm-specific productivity.

Applying an instrumental variable approach is another alternative, e.g. searching for instru-

ments that are highly correlated with the endogenous regressors, but not correlated with the

productivity term. Appropriate instruments in the production function literature are firm-level

factor prices or lagged inputs. The problem is that the former are rarely available and the latter

are valid instruments only if the time series is long enough. To summarize, the decision whether

to apply a proxy or an IV approach gets back to finding appropriate proxies for the omitted

variable (productivity) or finding appropriate instruments for the endogenous regressors, re-

spectively. Since we would face difficulties in finding a good proxy for firm-level productivity,

we apply the instrumental variable approach. Having firm-level data over a sufficiently long

time series reinforces the decision to follow the instrumental variable approach.

the marginal costs, whereas the serially correlated firm-level productivity differences.would represent short run

efficiency effects that capture the firm-level variation around the long run effects.
8For a discussion of how to correct for serially correlated unobserved state variables, see also Bajari, Benkard,

and Levin (2007), Pakes (1993), and Ackerberg, Berry, Benkard and Pakes (2005).
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Very little is known about the treatment of serially correlated unobservables in dynamic

games. The implementation of unobserved state variables makes identification a challenging

task. Contrary to i.i.d. shocks, we explicitly need account for the fact that players and econo-

metrician need to form beliefs over the distribution of their rivals’ unobserved state variables.

When solving this problem backwards, we get back to the initial condition problem. The regu-

lar procedure in solving this problem is to try different initial draws, or assuming a functional

form for the unobserved characteristic. Some studies estimate dynamic models, but not games,

allowing for autocorrelated errors, see e.g. Keane and Wolpin (1994), Stinebrickner (2000) and

Bound, Stinebrickner, and Waidman (2005). Duflo, Hanna and Ryan (2007) estimate a struc-

tural dynamic labor supply model that allows for serial correlation in the opportunity cost of

attending school. Their solution to the problem of serially correlated errors is to integrate out

over the unknown distribution of the error term. To overcome the “initial condition” problem

they make the assumption that agents receive an idiosyncratic draw from an unconditional

error distribution. In our study, we can easily overcome the initial condition problem since

every single DRAM generation starts from the same initial state, which is zero production.

We apply the two stage estimator by Bajari, Benkard and Levin (2007) as it allows us

to incorporate continuous choices as well as discrete choices. Their estimator builds on the

idea of Hotz, Miller, Saunders, and Smith (1994) to apply forward simulation for obtaining

the continuation values. In the first step, we estimate the policy functions for entry, exit and

production. The reduced-form policy functions describe what actions the firms take given

the state. We assume that firms cost function is characterized by observed and unobserved

serially correlated state variables, learning by doing and firm-level productivities, respectively.

We assume that the time variant firm-specific productivity enters the firms cost function and

follows a first order autoregressive process, such that it depends on the last period’s productivity

and an independent private shock every period. A positive autocorrelation indicates that more

(less) productive firms remain more (less) productive for a while. Firms therefore need to form

beliefs about their opponents productivity. The productivity enters firms production policies.

We apply four different estimators in the production policy in order to correct for the un-

observed productivity. The first estimator treats the unobserved productivity as an error term

that follows a first-order autoregressive process, also known as autocorrelation and apply a GLS

estimator. We use instruments for learning by doing. We do not account for time invariant

unobserved heterogeneity in this case, in order to avoid inconsistent estimats as the unobserved

heterogeniety would be correlated with the past accumulated output. The second estimator

directly controls for the serially correlated unobserved productivity by applying a lagged de-

pendent variable model, or an AR(1) model. In order to correctly account for the dependence
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between the lagged and the current dependent variable, we also need to account for time invari-

ant unobserved heterogeneity in order to avoid spurious correlation. We use instruments for the

lagged dependent variable and learning by doing. The Problem with the IV estimator in levels

is the initial condition problem. However, we can easily get around this problem as firms have

the same initial condition at the beginning of every generation. The third estimator is a first

difference estimator using instruments for the differenced learning variable. We apply the stan-

dard GMM estimator by Arellano and Bond (1991), which eliminates unobserved firm-specific

effects by taking differences. The problem is that instruments are not strongy correlated as the

series on production is highly persistent, so that lagged levels are only weakly correlated with

first differences. We finally apply the estimator by Blundell and Bond (1998), which is similar

to Arellano Bond (1991), but uses more efficient instruments.

We also estimate the policy functions without unobserved state variables. Our first stage

estimates confirm that accounting for a correlated unobserved state variable gives signficantly

different results in our application compared to not accounting for an unobserved state variable.

In a next step, we use forward simulations based on the optimal policy functions in order

to generate more observations and calculate the continuation values given the optimal poli-

cies. Next, we distort the optimal policy function and establish alternative suboptimal policy

functions from which the new suboptimal production paths are calculated.

In the second stage we use the structural parameters, such as generation-specific entry and

exit costs, parameters from the cost functions and the distribution of private shocks. We use a

simulated minimum distance estimator and look for those parameters that provide the best fit

to the data that are generated by the optimal policies representing the equilibrium outcomes

of profit-maximizing firms, compared to the data generated from suboptimal policies.

Fianlly, we calculate the sunk costs by calculating the expect discounted values at different

states and comparing them to entry observations at those state. If entry occured at those states

this means that sunk costs must be lower than the generated discounted profits generated at

thsi stage.

The remainder of the paper is as follows. The next section provides an industry description

providing some insight into the production technology as well as a first insight into the data.

Section 3 introduces our dynamic oligopoly model and Section 4 presents the econometric

model. In Section 5 we present the empirical results. We conclude in Section 6.
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2 Industry Description and Data

Semiconductors are a key input for electronic goods, such as computers, consumer electronics,

and communications equipment. The semiconductor industry is considered to be important as

it has a significant impact on many other downstream industries with a high impact on growth.

The semiconductor market consists of memory chips, micro components, and other components

such as logic devices.

One element of the memory devices are DRAM chips which becomemore complex and higher

requirements as tehy are used for games etc. More complex technology as electronic products

more demandin in memory. DRAM are differentiated by memory capacit how much memeory

can be stored on a wafer. Increasing demand on elelctr products increases the necessity to

introdune new generations with higher memory capacity which increases the pace of innovation.

Even within one generation processes need to constatnyl be imporoved and the pace of

innovation increases and the need to improve existing production processes increases over time.

Figure 2 shows the industry shipments (in mio.) across different generations, i.e. the 4K till the

1GB generation from the years 1974 to 2004 on a quarterly basis. The figure illustrates that

DRAM shipments follow a product life cycle, that lasts for approximately 5 years in the in 1980’s

to 3-4 years in the late 1990’s. A higher pace of innovation in downstream industries and higher

demand for more advanced chips is one reason why product cycles became shorter. Shorter

life cycles put higher pressure on firms to recoup research and development cost within shorter

time and generated profits may become too low for reinvesting into new product generations.

Figure 2b illustrates the average, minimum and maximum industry units shipped in the DRAM

industry over different generations. This figure clearly illustrate the upward trend in average

shipments over time and emphasizes a continuing market growth.

The pace of innovation in this industry also increases due to improving existing produc-

tion processes over time within a generation. DRAM chips are produced in batches on silicon

wafers. The production process requires a complex sequence of photolithographic transfer of

circuit patterns from photo masks onto the wafer and of etching processes. Regarding the

manufacturing process within a generation, it has to be very precise in terms of temperature,

dust, vibration levels and other determinants. It is of fundamental importance that this process

occurs in clean rooms, as even tiny dust particles on the wafer surface interrupt the connecting

pattern and thus the chip useless. The wafer, once processed, is cut and the single chips are

then assembled.9 Firms learn about production processes and devote an increasing share of

9More detailed descriptions of the production processes can be found in e.g. Gruber (1996), Irwin and

Klenow (1994) and Flamm (1993).
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their innovative activity to improving the production processes. The DRAM industry is char-

acterized by extensive learning by doing effects, resulting from the fine-tuning of production

processes. The yield rate, which is measured by the ratio of usable chips to the total number

of chips on the wafer increases through learning over time. Against the background of learning

by doing, firms’ unit costs decline over time as production experience is accumulated through

past output. Learning by doing is highest at the beginning of the life cycle and slow down over

time. Given a decreasing rate of learning within a generation cost differences between firms

become smaller throughout the life cycle which toughens price competition towards the end of

the life cycle for a generation. Learning by doing is one reason why we need to account for a

dynamic model as firms’ current output will increase future experience which results in future

cost savings. Given the existence of learning effects our study will account for the fact that

firms follow a dynamic production strategy, such that firms’ current production will reduce pro-

duction costs in the future (see e.g. Dick, 1991; Fudenberg and Tirole, 1983; Majd and Pindyck,

1989; Spence, 1981; and Wright, 1936). Learning by doing is frequently used to explain the

rapid price decline of the different generations (see Figure 1). Figure 1b which illustrates the

average, minimum and maximum prices for the different DRAM generations. The price decline

is an important aspect in the industry and even more so as it is transmitted to many other

downstream industries having an impact on economic growth. The price decline looks quite

similar for different generations. The price at which a new generation was introduced into the

market, however, is quite different across generations, and does not follow an obviously compa-

rable pattern. The learning by doing aspect is generation-specific, as production takes place in

specific plants using specific production processes. Gruber (1992) also notes that learning enters

the manufacturing process through the fine-tuning of generation-specific production processes.

Irwin and Klenow (1994) confirmed the statement and found only low, sometimes even nonex-

isting intergenerational spillovers in the market. Consequently, plant-specific investments are

driven by incurring generation-specific sunk costs.

We use firm level and industry level information on prices and quantities of different DRAM

generations which are compiled by Gartner Inc. The data cover firm units shipped, industry

units shipped, the average selling price, and the number of firms in the market from January

1974 to December 2004 on a quarterly basis. The dataset encompasses 14 generations, namely

the 4K, 16K, 64K, 256K, 1MB, 2MB, 4MB, 8MB, 16MB, 64MB, 128MB, 256MB, 512MB, and

1GB generation.

Tables 2a and 2b shows the different producers for different generations. It is very interesting

to note that the number of firms increases from 15 in the 4K DRAM generation to 22 firms

in the 64K and 24 firms in the 4 MB and 23 firms in the16 MB DRAM generation. The

9



number of firms then declines down to 15,11, 7, and 5 firms in the 128MB, 256MB, 512MB,

and 1GB DRAM generation, respectively. See also Figure 3b and Figure 3c for the evolution

of the number of firms over different generations. Note that the number of firms is not due

to truncation problem or the fact that life cycles just started as for 256MB gerentaion hte

peak of the life cycle has been reached. It is interesting to note that firms enter different

DRAM generations successively, meaning that once a firm exits the market it will not reenter

in any successive generation. Moreover, our dataset shows that firms enter new generations

at most 2 years after the generation has been launched. Entry occurs (almost exclusively) at

the beginning and exit mostly at the end of the life cycle. One explanation for finding few

turbulences in the middle of a DRAM generations is consistent with learning effects, as late

entrants may not be sufficiently efficient to compete with firms that are further down the cost

function due to learning effects.

Our dataset also shows that the ranks for the top sellers between different generations is

quite persistent. This observation might be an indication that firm-specific determinants such

as productivity managerial talent or organizational structures are important features. This

argument strengthens our idea to account for serially correlated unobserved state variables.

Moreover, it is quite interesting to note that firms exiting and entering different generations

occur at the lower ranks. It is the small firms who exit, and firms entering the DRAM market

begin with a low production volume. These facts indicate that entry and exit decisions are long

run decisions in which the entry and exit cost is related to firms’ profits over the product life

cycle.

Table 3 provides summary statistics of some of our variables that we will be using in our

empirical analysis later on. In a first step, we will apply very preliminary regressions in order to

investigate if learning effects are prevalent in our dataset. From the output data, we construct

current industry output and past cumulative industry output. Current output is used to test

for economies of scale. Cumulative industry output is used to test for firms’ efficiency and

learning effects. We regress the average prices on a constant, cumulative industry output,

current industry output, and a set of dummy variables for different generations. Table 4 shows

the results when we formulate learning effects to be identical across generations. We are able

to use more than 500 observations and get R squares higher than 80%. We perform OLS and 2

SLS regressions, in which we instrument for the current industry output by using the price for

material, which is the world market price of silicon compiled by Metal Bulletin. We also use

summary statistics from the supply side such as the number of firms in the market. A negative

sign for the cumulative industry output is consistent with learning by doing. The negative sign

on current industry output relates to increasing economies of scale in the industry. Table 5
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shows the results when we allow for different learning effects across different generations. As

shown in the table the learning effects are around 0.4. They are very comparable across different

generations until the 256MB generation. The learning effects are lower for the 512MB and the

1 GB generation. The lower learning effects are probably due to the very few observations for

the last two generations. To summarize, it is interesting to note at this point that learning

effects do not differ much across different generations.

We also use patent data in order to approximate the innovative pace over time and use the

NBER patent database established by Hall, Jafee, and Trajtenberg (2001). The patent database

includes patents that were applied for and subsequently granted in the U.S between 1963 and

2002. We use U.S. patents because the U.S. is the world’s largest technology marketplace and

it has become routine for non-U.S.-based firms to patent in the U.S., see also Albert (1991).

The database holds detailed information on approximately 3 million U. S. utility patents. The

patent data themselves were procured from the Patent Office. We identified the patents that

each DRAM producer holds in the DRAM market. Table 1a shows the number of patents for

every time period between 1989 and 1997. The number of patent applications is around 143,109

patents per year (as of 1997). The number of patents in the semiconductor industry represents

a share of about 5% to 10% of the patents overall. The number of DRAM patents represents

a share of about 5% of the semiconductor patents. Our data confirm that the DRAM industry

is characterized by a high degree of innovation.

3 Dynamic Oligopoly Model

This section outlines a model of dynamic competition between oligopolistic firms in the DRAM

industry. The model is formulated as a state game model. A firm’s action in a given period

influences not only its own and rival firms’ current profits, but also its own and rival firms’

future states. Besides market demand and market structure, an important state that affects

current and future profits is a firm’s cost structure.

The cost structure depends on produced output, input prices, a firm’s experience in the

production process, and on its productivity. Experience is determined by learning-by-doing

and spillovers. The first component is usually modelled as own cumulative past output, and

the second component is usually modelled as other firms’ cumulative past output or cumulative

past industry output. A firm’s output decision is therefore an investment into experience and

influences its own and rival firms’ cost structure.

We use a discrete-time infinite horizon model with time indexed by t = 0, 1, . . . ,∞. There
are I firms denoted by i = 1, . . . , I. The set of firms includes potential entrants and incumbent
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firms. In each period, each firm i earns profits equal to πit = π(qit, q−it, st, vit), which are a

function of own actions qit, other firms’ actions q−it, a vector of state variables st describing the

market conditions and a private shock vit describing a firm’s productivity which shifts marginal

costs.

Relevant state variables are market demand dt, input prices mt, the set of producing firms

nt and a firm i’s experience exit, i.e. st = (dt,mt, nt, exit). Market demand dt and input prices

mt are determined by a common shock. The number of firms in the market nt is determined by

the exit decision of incumbents and the entry decision of potential entrants. Incumbent firms

decide whether to stay in the market and produce qit or to exit and receive a fixed scrap value κ.

Potential entrants decide whether to enter the market and to produce output qit or to stay out

of the market and produce no output. A firm i’s experience exit has two components. The first

component is a firm’s proprietary experience xit and the second component is spillovers x−it
that firm i receives from other firms. A firm i’s proprietary experience xit is its own cumulative

past output, such that xit =
Pt−1

τ=1 qiτ . Or expressed differently, xit = xit−1+ qit−1 with xi0 = 0,

where we assume there is no proprietary experience in the beginning of the product cycle. A

firm i’s spillovers x−it are other firms’ cumulative past output, such that x−it =
Pt−2

τ=1

P
j 6=i qjτ .

Or again expressed differently, x−it = x−it−1+
P

j 6=i q−jt−2 with x−i0 = 0, where we assume there

are no spillovers in the beginning of the product cycle. Potential entrants have no experience

and receive no spillovers.

Before firms simultaneously set their action by choosing their output qit, each firm i observes

a private shock vit, independently drawn from a distribution Gi(.|st). The private shock may
derive from variability in production costs, cit. Firms productivity is modeled as a first order

autoregressive process ωit = ρωit−1+vit, where ρ is the persistence or autocorrelation parameter.

The autocorrelation reflects the fact that firms that are more productive today are more likely

to be more productive tomorrow. Since the firm’s productivity is correlated over time, it

represents our serially correlated unobserved state variable.

Each potential entrant additionally observes a shock uiτ , independently drawn from a distri-

bution Hi(.|sτ i), where τ i is the period firm i enters the market. As entering firms immediately

start to produce, this means that a firm that enters the market observes two private shocks.

As the shocks are private information firms solve for Bayesian Nash equilibria.

Each firm i maximizes its future discounted payoffs conditional on the

initial state s0, the initial value of private shock vi0 and the initial value of sunk cost ui0:

Ev,u
∞X
t=0

βt[πi(qit, q−it, st, vit, uit)|s0, vi0, ui0] (1)

where β ∈ (0, 1) is the discount factor, which is set equal to 0.9.

12



3.1 Profits in the Product Market

A firm i’s per period profits in the product market are sales minus cost

πit(qit, q−it, st, vit) = p(qt, zt, dt)qit − c(qit,mt, xit, x−it, ωit−1, vit)qit − fi (2)

where p(qt, zt, dt) is the industry price as a function of the industry output qt =
Pnt

i=1 qit, observ-

able demand shifters zt and a random shock dt. c(qit,mt, xit, x−it, ωit−1, vit) is firm i’s marginal

cost as a function of its output qit, input prices mit, proprietary experience xit, spillovers x−it,

unobserved state ωit−1 and firm i’s private shock vit. fi is firm i’s fixed cost. We specify the

inverse demand function pt as follows:

pt(qt, zt, dt) = dtq
δ1
t zδzt , (3)

where δ1, the elasticity of the inverse demand, and δz are coefficients to be estimated. We

assume there is no firm specific uncertainty about demand as this would not be identified from

a private shock in marginal cost. We specify a firm i’s marginal costs as a linear function of its

arguments:

ci(qit,mt, xit, x−it, ωit−1, vit) = θ0 + θ1qit + θ2mt + θ3xit + θ4x−it + ρωit−1 + vit, (4)

where we denote the vectors of coefficients with θ and ρ and vit is drawn from a standard normal

distribution. The initial condition for ωi is derived from the fact that firms do not produce

output qi before the product cycle starts.

3.2 Entry and Exit Cost

A potential entrant incurs entry cost when it enters the product market and its profits in the

first period of market appearance are

πi(qiτ i , q−iτ i , sτ i , viτ i , ui) = p(qτ i , zτ i , dτ i)qiτ i − c(qiτ i ,mτ i, viτ i)qiτ i − fi − uiτ i , (5)

where τ i is the period firm i enters the market and ui is the privately observed random shock

before entering the market. Learning-by-doing xi, spillovers x−i, the unobserved state ωi are

equal to zero at the time of entering the market. The profits of an incumbent firm that leaves

the market are

πi(qiTi , q−iTi , sTi , viTi) = p(qTi , zTi , dTi)qiTi − c(qiTi ,mTi , xiTi , x−iTi , ωiTi−1, viTi)qiTi (6)

−fi + k

where Ti is the period firm i leaves the market and k is the scrap value.
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3.3 Transition of States

For a complete description of the state game, the transition between states has to be defined.

Our state variable market demand dt is determined by a common period-specific shock and

therefore does not require any further assumptions on state transitions over time. However,

our state variables experience xit and spillovers x−it are influenced by past actions. The laws

of motion for those state variables is deterministic and described by its cumulative past own

output

xit+1 = xit + qit (7)

and the cumulative past output of other firms

x−it+1 = x−it +
X
j 6=i

qjt−1. (8)

For (7) and (8), the initial condition is that the respective state is equal to zero. There is no

output production before the product cycle starts and no experience and no spillovers at the

begin of the product cycle.

This leaves us to define the transition of the number of firms in the market nt from time t

to time t+ 1. The number of firms in the market nt+1 is

nt+1 = nt + net − nxt, (9)

where net is the number of entering firms and nxt the number of exiting firms. The number

of entering firms net depends on the distribution of ui. A firm i enters, when future expected

profits are positive. The number of entering firms nxt depends on the scrap value k. A firm i

exits, when future expected profits are lower than the scrap value which is fixed but could be

estimated in the second stage.

3.4 Firms’ Strategies

Firms use Markov strategies qit = σi(st, vit), i.e. a firm’s output qit is a function of the state

variables st and the private shock vit, generating Markov-perfect Nash equilibrium. Rival firms’

strategies are denoted by q−it = σ−i(st, v−it). If behavior is given by a Markov strategy profile

σ = (σi(st, vit), σ−i(st, v−it)), firm i’s expected profits given the state variables st can be written

recursively:

Vi(st;σ) = Ev,u[πi(σi(st, vit, ui), σ−i(st, v−it, u−i), st, vit, ui) (10)

+β

Z
Vi(st+1;σ)dP (st+1|σi(st, vit, ui), σ−i(st, v−it, u−i), st, vit, ui)|st],
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where Vi(st;σ) is firm i’s ex-ante value function. A strategy profile σ is a Markov perfect

equilibria if, given the strategy profile of rival firms σ−i(st, v−it, u−i), firm i does not want to

deviate from its strategy profile σi(st, vit, ui), i.e.

Vi(st;σ) ≥ Vi(st;σi0, σ−i), (11)

where σi0 is an alternative strategy for firm i.

The structural parameters of our model are the discount parameter β, the profit functions

π1, . . . , πI , the distribution of private shocks G andH following a standard normal distribution.

To obtain estimates of these parameters, we build on the estimation method developed by

Bajari, Benkard and Levin (2007). This is a two-stage procedure. The first stage includes the

estimation of the policy function σi, the transition probabilities P and the value functions Vi.

The second stage estimates the profit function πi and the distribution Gi. We assume that a

firm’s productivity is unobserved. We therefore extend their estimation method to allow for

unobserved state variables and recover the unobserved state by assuming that productivity is

a monotonic function of learning-by-doing and past cumulative output of other firms.

4 Econometric Model

In the following we will present the econometric model. As mentioned above we follow the

2-stage estimation routine by Bajari, Benkard and Levin (2007). In the first stage, we estimate

the policy functions and the value function. The second stage assumes that the policy func-

tion and the transition probabilities are parameterized by a finite vector, and that this vector

can be consistently estimated at the first stage. This assumption permits a non-parametric

first stage with discrete action and state variables or a parametric first stage with continuous

action and state variables. As described above, our model allows for continuous action and

state variables. To parameterize the first stage, we thus have to assume that the functional

form of the policy function and the transition probabilities is known. For the exposition of the

estimation algorithm, we assume it is a linear function. The estimation algorithm is however

equally applicable to more complicated functions of however known form. For the estimations,

we try various higher order polynomials to approximate an arbitrary non-linear policy function

and finally use the specification with the highest fit. Since some of the generations are not

long enough in the market to generate a sufficiently large time series, we will not estimate the

dynamic model for each generation separately, but will rather pool the data and use dummy

variables to accounting for generation-specific effects. We also would like to refer to our esti-

mation results displayed in Table 4 and 5, which provide support that learning effects are very
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comparable throughout different generations.

4.1 Estimation of the First Stage

The estimation of the first stage includes the estimation of the policy functions. There are

various policy decisions. There is the entry decision of potential entrants and incumbents’ deci-

sion whether to exit the market. Incumbents also decide on their output. For the incumbents’

output function, it is necessary to obtain estimates for the demand (3) and entry profits (5).

Demand We specify the demand function log-linearly as

ln(qt) = δ0 + δ1 ln(pt) + δ2 ln(p
S
t ) + δ3 ln(GGDPt) + δ4timet +

15X
l=5

δlDl + dt (12)

where we denote the vector of coefficients with δ. qt is the market output of the chip at time

t. pt is the average selling price of a chip at time t, and pSt is the average selling price of the

closest substitute. For the price of the closest substitute we construct a price index. For each

DRAM generation, we identify a corresponding SRAM generation and use the price of this

generation as the price of the closest substitute. GGDPt represents the growth rate of the

GDP, which we use as an exogenous demand shifter. Time is a time trend, Dl represents a

dummy variables for every generation, where the 4K generation is used as the reference. d is

a sequence of independently distributed normal variables with a mean of zero and a constant

variance σd. We predict a negative sign for the own price elasticity of demand δ1. The cross-

price elasticity δ2 is supposed to be positive (negative) if the respective products are substitutes

(complements). We further await a positive sign for the demand shifter δ3. The expected sign

of the time trend coefficient δ7 is supposed to be negative. It captures the effect of the time

length that a particular generation has been in the market.

Incumbents’ Output Policy Function Firm i’s policy function σi is a function of the

state variables st and the private shock vit in marginal cost, i.e. qit = σi(st, vit, ui). If we

assume that the policy function is log-linear in the state variables and in the private shock and

if we implement the first order autoregressive process of the firm-level productivity, the policy

function of incumbent firms is equal to

ln(qit) = γ0 + γ1d̂t + γ2 ln(mt) + γ3 ln(nt) + γ4 ln(xit) + γ5 ln(x−it) + γ6timet (13)

+γ7wit−1 +
18X
l=8

γlDl + vit,
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where we denote the vector of coefficients with γ, qit represents firm i’s output at time t

and d̂t is the contemporary demand shock obtained as the residual of (12). The variable mt

represents the price of silicon in period t, nt stands for the lagged number of firms, xit and

x−it represents the cumulative past output of firm i and all other firms, respectively. The

time variable and the dummy variables are defined as in the demand equation. Note that we

estimate a pooled regression in order to be able to use more observations for our variables

of interest. Therefore, we assume that our right hand side variables have an equal impact on

different generations. The dummy variables, however, will absorb any time invariant differences

between the generations. Finally, wit−1 account for first order autocorrelation effects in firm i’s

production. We assume that a firm i’s private shock vit in marginal cost is uncorrelated with

the state variables st, st−1, . . . , s0 such that

E[vit|st, st−1, . . . , s0] = 0.

We would expect positive signs for the coefficients γ2, γ4, and γ5 and a negative sign for γ7.

We alsodirectly control for the serially correlated unobserved productivity by applying a

lagged dependent variable model, or an AR(1) model. In this case the policy function looks as

follows:

ln(qit) = eγ0 + eγ1d̂t + eγ2 ln(mt) + eγ3 ln(nt) + eγ4 ln(xit) + eγ5 ln(x−it) + eγ6timet (14)

+eγ7 ln(qit−1) + 18X
l=8

eγlDl + ci + vit,

where the vector of coefficients is denoted by eγ, and ci denotes firm invariant unobserved

heterogeneity. Finally, we can write the policy function in first differences in order to eliminate

the unobserved heterogeneity.

Entry and Exit To obtain estimates for the distribution of ui and κ, we estimate probit

models. Potential entrants make their decision to enter dependent on the state variables dt
and nt, but not on xit and x−it as they have not gained either propriety experience or gained

experience through spillovers. We, however, augment the empirical model with cumulative

industry output to account for cost efficiencies in the industry

P (entryτ i) = α0 + α1d̂τ i + α2 ln(mτ i) + α3 ln(nτ i) + α4 ln(xiτ i) + α5 ln(x−iτ i) (15)

+α6timeτ i +
17X
l=7

αlDl + uiτ i ,
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where we denote the vector of coefficients with α, and d̂ is the demand shock obtained as the

residual of (12). All other variables are redundant to the previous specifications.

Incumbent firms face the decision, whether to stay in the market or to exit. Their decision

to exit the market depends on all state variables

P (exitTi) = λ0 + λ1d̂Ti + λ2bviτ i + λ3 ln(mTi) + λ4 ln(nTi) + λ5 ln(xiTi) (16)

+λ6 ln(x−iTi) + λ7timeTi +
18X
l=8

λlDl + κTi ,

where we denote the vector of coefficients with λ and bv is the productivity shock obtained as
the residual of the output policy function. Given (15) and (16), we calculate the number of

firms in the market.

Value Functions Estimation of the value functions is based on the estimated policy functions

and the transition between states. From estimating (13), we obviously get qit = q̂it+ vit, which

we use to simulate a sample of optimal policies

qitl = q̂it + vitl, (17)

where at each point in time t = 0, 1, . . ., we draw a random sample of vitl with l = 1, . . . , L

from the distribution Gi(.|st) and calculate simulated profits πilt(qitl, q−itl, stl, vitl). We use (9)
to move from one state to the other w.r.t. the number of firms and obtain for each simulation l

nt+1l = ntl + netl − nxtl, (18)

where netl and nxtl are determined by (15) and (16) and a random draw uitl from Hi(.|st) with
l = 1, . . . , L. We then use (7) and (8) to move from one state to the other w.r.t. proprietary

experience and spillovers and obtain for each simulation l, xit+1l = xitl + qitl and x−it+1l =

x−itl +
P

j 6=i qjt−1l. Finally, we use the specifications for demand (3) and the marginal cost

function (4) and calculate simulated profits as

πitl = p̂tlqitl − (θ0 + θ1qitl + θ2mtl + θ3xitl + θ4x−itl + ρωit−1l + vitl) qitl − fi, (19)

where δ̂1 is an estimate for the elasticity of demand obtained from (12) and ω̂(xitl, x−itl) is an

estimate for ω(xitl, x−itl) obtained from (13). To obtain an estimate for the value function, we

add up profits πitl over t and take the mean of the simulated profits πil over l

Ṽi(st;σi, σ−i, δ, γ, α, λ, θ) = (20)

1

L

LX
l=1

∞X
t=0

βt{p̂tl qitl − (θ0 + θ1qitl + θ2mtl + θ3xitl + θ4x−itl + ρωit−1l + vitl) qitl − fi},

where we assume that for large enough t firms do not produce anymore.
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4.2 Estimation of the Second Stage

To recover the structural parameters θ of the marginal cost function, we exploit the equilibrium

condition (11) and construct for each simulated policy (17) an alternative policy and compare

simulated and alternative strategies. An alternative strategy is equal to

qitl0 = qitl + , (21)

where is a random draw from the standard normal distribution function. We now calculate

alternative profits given alternative strategy qitl0

πitl0 = p̂tl0 qitl0− (θ0 + θ1qitl0+ θ2mtl + θ3xitl0+ θ4x−itl0+ ρωit−1l0+ vitl)qitl0− fi. (22)

An estimate for the value function is again the mean of the simulated profits,

Ṽi(st;σi0, σ−i, δ, γ, α, λ, θ) =
1

L

LX
l=1

∞X
t=0

βt{p̂tl0 qitl0− (θ0 + θ1qitl0+ θ2mtl + θ3xitl0+ θ4x−itl0+ ρωit−1l0+ vitl)qitl0− fi}.

For we use m = 1, . . . ,M random numbers, m. This gives usM× Ṽi(s;σi0, σ−i, δ, γ, α, λ, θ)’s.
We can rewrite the equilibrium condition (11) as

Ṽi(st;σi, σ−i, δ, γ, α, λ, θ) ≥ Ṽi(st;σi0, σ−i, δ, γ, α, λ, θ). (23)

Exploiting the linearity of θ in firm i’s profit, provides us with

[W̃i(st;σi, σ−i, δ, γ, α, λ)− W̃i(st;σi0, σ−i, δ, γ, α, λ)] θ ≥ 0. (24)

Let’s define a function g as follows

g(y; δ, γ, α, λ, θ) := [W̃i(st;σi, σ−i, δ, γ, α, λ)− W̃i(st;σi0, σ−i, δ, γ, α, λ)] θ ≥ 0. (25)

The inequality defined by y is satisfied at (δ, γ, α, λ, θ), if g(y; δ, γ, α, λ, θ) ≥ 0. We can express
(25) also in differences,

gitl(yitl; δ, γ, α, λ, θ) := (26)

(p̂tl − p̂tl0)∆qitl − (θ0 + θ1∆qitl + θ2mtl + θ3∆xitl + θ4∆x−itl + ρ∆ωit−1l +∆vitl)∆qitl

where ∆qitl = qitl − qitl0. When we define the function

Q(δ, γ, α, λ, θ) :=

Z
(min{g(y; δ, γ, α, λ, θ), 0})2dH(x). (27)
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When we define the function g̃(y; δ̂, γ̂, α̂, λ̂, θ) as the empirical counterpart of g(x; δ, γ, α, λ, θ)

computed by replacing the Vi terms with simulated estimates Ṽi, we can define

Qn(δ, γ, α, λ, θ) :=
LX
l=1

{min [g̃(y; δ̂, γ̂, α̂, λ̂, θ), 0]}2. (28)

Finally, in order to estimate the sunk cost we rely on the fact that there firms are forward-

looking and rational and are able to calculate their discounted profit stream given the evolution

of the state vector and their policy functions. If a firm does not enter, even though the expected

profits are positive, it implies that the draw on sunk cost exceeded the value generated in the

market. Hence, the discounted expected profits of entering at different states is simulated

for many different paths. Averaging those gives the theoretically expected profits of entering

at different states. The distance between those caclulated profit streams and the observed

observed entry rates at those states is minimized, which gives allows us to recover the sunk cost

distribution.

Finally, we calculate the sunk costs by calculating the expect discounted values at different

states and comparing them to entry observations at those states. If entry occured at those

states it indicates that sunk costs are lower than the generated discounted profits at this stage

and vice versa.

5 The Estimation Results

This section discusses the estimation results. We start with the estimation results of the demand

function. We then proceed with the entry and exit distribution, and the incumbents’ output

policy function. Finally, we describe the structural parameters.

Demand Equation In order to obtain estimates for the coefficient vector δ, we estimate

industry demand (12) using ordinary least squares as well as two stage least squares. In the

latter case, we instrument the average selling price in the demand equation using the GDP of

the OECD at constant prices as a nonprice demand shifter. We also use summary measures

from the supply side, like the number of firms in the industry, cumulative industry output, and

the price of silicon — all variables in logarithm.

The estimation results of the demand equation are shown in Table 6. The results using the

ordinary least squares estimator as shown in column 1, whereas the results for the 2 stage least

squares estimator as depicted in columns 2 and 3. Since the results of the two estimators are

very similar, we will exclusively report on the results using the instrumental variable estimator.
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The first stage equation (column 2) represents a good fit with an adjusted R-square of about

0.94. A test for the joint significance of the instruments indicates that the number of firms in

the industry, cumulative world output and the price of silicon are highly correlated with the

average selling price. With a value of 73.41 for the F-statistics, we reject the null hypothesis

that the estimated coefficients of these variables are equal to zero. A Hausman test indicates

the necessity to instrument the average selling price in the demand equation. The value of

the χ2 distributed test statistic is equal to 60.55, which is larger than 18.31 — the 5% critical

value with 11 degrees of freedom. Two of our three instruments are significantly different from

zero. The negative sign on the cumulative industry output is meaningful as higher cumulative

industry output lowers marginal costs in the presence of learning by doing, which shifts the

supply curve downwards resulting in lower equilibrium prices. The positive sign on the price of

silicon indicates that higher factor prices shifts the marginal cost curve upwards which results

in higher equilibrium prices.

Turning to the second stage of the instrumental variable estimator (column 3), the R-square

of about 0.71 confirms a high explanatory power of the estimation. All variables are significantly

different from zero at least at the 5% level. The estimate of the average selling price of a chip

is a negatively significant indicating a negative own price elasticity of demand. The magnitude

of -3.03 represents the fact the DRAM market is characterized by a highly elastic demand

curve. The estimate of SRAM chips, is significant and positive, indicating a positive cross-price

elasticity and indicating that SRAM chips represent substitutes. Moreover, the estimate of

0.458 also confirms that the price of SRAMs has a lower impact on the DRAM demand than

the price of DRAMs themselves. The demand shifter GGDPt is positively significant, providing

evidence that a higher growth in GDP shifts the demand outwards. The negative time trend is

consistent with previous findings that buyers substitute away from one generation to the next

as time elapses. The dummy variables for the different generations are all highly significant and

positive. The magnitude of the estimates are very comparable over different generations, which

reinforces the reliability of the estimation results. Interestingly, the magnitude of the dummy

variables is increasing throughout all the different generations, which underlines the increasing

importance of using DRAM chips in application specific electronic products. Moreover, it is

interesting to note that the increase in dummy variables increasees by a magnitude of 3 to 4 up

until 16 MB generation. Thereafter, however, the increase in the dummy variables diminishes

to 1. This results emphasizes that the growth in market demand increased over different

generations, but the growth in demand slowed down towards the more recent generations.
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Policy Function We estimate incumbents’ output policy (13) with general least squares to

obtain estimates for the coefficient vector γ. The results are shown in Table 7. We estimate

equation (13) in by accounting for a first-order autocorrelation process, see column 1. We also

estimate firm’s output policy function by applying a lagged dependent variable model, or an

AR(1) model, in order to control for the serially correlated unobserved productivity as shown in

(14). Finally, we apply a first difference estimator accounting for a first-order autocorrelation

process in the unobserved state variable ωi (columns 3 and 4, respectively). Column 3 display

the estimation results for the Arellano-Bond (1991) estimator which uses lagged dependent

variables in levels. Column 4 displays the results for the Blundell-Bond (1998) estimator,

which uses the levels and differences of the lagged dependent variable in the set of instruments.

Note that the last two estimators eliminate the unobserved heterogeneities by applying first

differences.

Our pooled regression allows us to use approximately 3,500 observations. The regression

estimations for the instrumental variable estimations illustrates a remarkably good fit, it has R-

square of 0.89. The estimates for the instrumental variable regressions in differences performs

quite poorly and also carries parameter estimates that are sometimes couterintuitive. The

problem with the first difference estimators is that the instruments are not strongy correlated as

the series on production is highly persistent, so that lagged levels are only weakly correlated with

first differences. The instrumental variable estimator in levels (column 2) fits the expectations

of our model the best. The observed serially correlated variable, cumulative past output, which

captures the learning by doing effects is positive and significant. This result emphasizes the

importance of learning by doing in this industry. More experience in production increases

efficiency and increases output. The lagged output carries a positive significant sign which

shows that a first-order autocorrelation process is present in the data. We can confirm that

correcting for serially correlated unobserved state variable, e.g. firm-specific productivity is

important to control for. It confirms our notion that firms are able to react according to the

private shocks they receive in the short run. The positive demand shock indicates that firms

are able to increase their production. The negative sign on the price of material confirms that

higher factor prices increase marginal cost and lower firm level output. The positive sign of the

number of firms in the market illustrates that more firms in the market increase the competitive

pressure in the market. The dummy variables for the different generations as well as the time

trend turn out to be highly significant.

Entry and Exit Distribution We estimate the entry distribution (15) and exit distribution

(16) with probit models to obtain estimates for the coefficient vectors α and λ. The results are
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shown in Table 8. The results for the entry regression are shown in the first column.

The positive coefficient on number of firms is insignificant. However, the sign indicates the

fact that few early movers enter at the initial time periods, whereas the majority of firms enters

when the life cylce approaches the matured phases. This entry pattern emphasizes the fact that

firms need to come up with a new technology to enter a new technology, and only few firms are

clearly ahead of others. This results reinforces the existence of spillovers in the market, which

make it difficult to protect flows from research and development. The time trend shows that

the number of entering firms increases over the life cycle of a generation, which is intiutive as

we include the whole time span over the life cycle for most generations. An interesting results

is that the dummy variables are negative and become even more negative throughout different

generations. This result shows that entry became less likely over different generations given

generation-specific fixed effects, which is an indication that entry costs increased throughout

different generations. An increase in sunk costs would be supported by the engineering litera-

ture. Slightly surprising is the negative sign of the demand shock.and the positive coefficient

on the price of silicon.

Turning to the results for the exit equation (columns 2-4), the demand and productivity

shock carry negative signs. The results confirm that negative productivity shocks foster firm’s

exit.

Structural Parameters Finally, we are interested in recovering the structural parameters θ

and ρ from the marginal cost function (4) as well as estimating the sunk cost in the different

generations. As described above, we exploit the equilibrium condition (11) and construct for

each simulated policy (17) an alternative policy. We compared the simulated value functions

based on optimal strategies with the simulated values based on alternative non-optimal strate-

gies and minimize the deviations of those to recover the structural parameters. We use 10,000

simulations and without firm-specific and product-specific fixed effects in the marginal cost

function.

As shown in Table 9, the estimation results are plausible. We are able to use 304 observations

and our structural parameters are all highly significant at the 1% level. We find that the cost

function is characterized by increasing economies of scale. Moreover, we can confirm significant

learning by doing effects and spillovers being prevalent in the industry which lower the marginal

costs. Our estimate for sunk costs over all generations are about 1.3 billion US-dollars and get

close to what has been reported in business reports. The standard deviation is about 2.2 billion

US-dollars, which indicates that sunk cost over different generations do fluctuate a lot. We

can also confirm increasing sunk cost over the first part of the different generations. However,
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we are currently facing the problem that some estimated sunk costs for the latest generations

are decreasing. We think that we may not have enough data to accurately estimate the sunk

costs for the latest generations. The expected discounted profits are not accurate in this case

as the life cycles did not even reach the peak yet. Since the discounted profits are compared to

the entry probabilities we may get distorted sunk cost estimates. We contemplate to possibly

correct for this truncation problem.

6 Conclusion

This study tried to investigate why the number of firms increased during early DRAM gen-

erations and the sharply declines throughout more recent DRAM generations. We estimated

a dynamic model accounting for entry, exit, and intertemporal production decision made by

firms in an oligopolistic market structure. We build on the estimator by Bajari, Benkard and

Levin (2007) and accounted for additional serially correlated unobserved state variables. Those

unobservables are supposed to capture unobserved productivity differences between firms that

enter the marginal cost function.

We could also show that implementing an unobserved state variable is indeed important

and turns out to return significant estimates. Our sunk costs estimates are getting close to the

reported establishment plant costs.

We find that growth in market demand increased over different generations. However, we

also find that the growth rates are higher for early generations. The growth rates slow down

for the more recent generations. Entry costs increased throughout early generations. We can

conclude that for early generations the growth in demand overcompensates the losses from

increasing sunk costs. For more recent generations, however, the growth in demand diminishes

and the sunk cost increases. Since the losses from increasing sunk costs dominates the benefits

from diminishing growth rates, fewer firms enter the more recent generations. Hence, the inverse

U-shape in the industry can be explained by the interdependence between the growth in market

demand and the increase in sunk costs.

What is left to do:

We need to report several tests such as validity of instruments, and sequential exogenous

regressors.

We also want to do more robustness checks with regard to the number of simulations.

We want to test how the number of firms over generations evolves once we hold the sunk

costs constant over all generations. It would be interesting to see if the model generates an

inverse U-shape of the number of firms even when sunk cost are set constant. If we don’t get
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close to the data, we could confirm that the increase in sunk cost is important to generate the

market structure that we observe in the data.
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7 Appendix: Tables and Figures

Table 1a: Number of Patents
Time DRAM Patents Semiconductor Patents Total Patents

1989 701 4,063 78,619

1990 765 4,521 81,302

1991 853 5,276 82,939

1992 908 5,313 86,548

1993 1,083 5,688 89,572

1994 1,361 7,554 102,553

1995 1,572 9,250 122,127

1996 1,951 10,390 122,552

1997 2,390 13,507 143,109

Table 1a presents number of patents over time. Source: NBER patent database.
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Table 1b: Reported Establishment Costs

COMPANY COUNTRY PRODUCTS YEAR Wafer/Month Cost (US$)

Fujitsu England 64MB DRAM 1999 15,000 1.4b

IBM France 16/64MB DRAM 1997 20,000 1.0b

Siemens Germany 256MB DRAM 1999 25,000 1.9b

Siemens England Memory 1997 25,000 1.6b

Texas Instr Italy 16MB DRAM 1995 15,000 1.0b

LG Wales 256MB DRAM 1998 TBA 1.3b

Table 1b presents reported establishment costs. Prices are in current US Dollars. Souce: Gruber (199?).
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Table 2a: Firms in the DRAM Industry
Firms 4K 16K 64K 256K 1Mb 4Mb 16Mb

Adv. Micro Dev. x x x . . . .
Alliance . . . . . x x
Am. Microsyst. x . . . . . .
AT&T . . . x x . .
Elpida . . . . . . x
Eurotechnique . x . . . . .
Fairchild x x x . . . .
Fujitsu x x x x x x x
G-Link . . . . x x x
Hitachi x x x x x x x
Hynix . . . . . x x
Hyundai . . x x x x x
IBM . . . . x x x
Inmos . . x x . . .
Intel x x x x x . .
Intersil x x . . . . .
LG . . . x x x x
Matsushita . x x x x x x
Micron . . x x x x x
Mitsubishi . x x x x x x
Mosel Vitelic . . x x x x x
Mostek x x x x . . .
Motorola x x x x x x x
Nan Ya Techn. . . . . . . x
Ntl. Semic. x x x x . . .
NEC x x x x x x x
Nippon . . . x x x x
OKI . . x x x x x
Ramtron Int. . . . . . x .
Samsung . . x x x x x
Sanyo . . . x x x .
SGS-Thompson x x . . . . .
Sharp . . x x x x .
Siemens . x x x x x x
Signetics x x . . . . .
STC x x x . . . .
Texas Instr. x x x x x x x
Toshiba . x x x x x x
Vanguard . . . . . x x
Zilog . x . . . . .
Number of Firms 15 20 22 23 22 24 23

Table 2a presents those firms which entered different DRAM generations. An x indicates a firm’s presence in

the DRAM market. Souce: Gartner.
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Table 2b: Firms in the DRAM Industry
Firms 64Mb 128MB 256MB 512MB 1GB

Adv. Micro Dev. . . . . .
Alliance . . . . .
Am. Microsyst. . . . . .
AT&T . . . . .
Elpida x x x x x
Eurotechnique . . . . .
Fairchild . . . . .
Fujitsu x x . . .
G-Link x x . . .
Hitachi x x x . .
Hynix x x x x x
Hyundai x x . . .
IBM x . . . .
Inmos . . . . .
Intel . . . . .
Intersil . . . . .
LG x . . . .
Matsushita x . . . .
Micron x x x x x
Mitsubishi x x x . .
Mosel Vitelic x x x . .
Mostek . . . . .
Motorola x . . . .
Nan Ya Techn. x x x x .
Ntl. Semic. . . . . .
NEC x x . . .
Nippon x . . . .
OKI x . . . .
Ramtron Int. . . . . .
Samsung x x x x x
Sanyo . . . . .
SGS-Thompson . . . . .
Sharp . . . . .
Siemens x x x x x
Signetics . . . . .
STC . . . . .
Texas Instr. x . . . .
Toshiba x x x x .
Vanguard x x x . .
Zilog . . . . .
Number of Firms 22 15 11 7 5

Table 2b presents those firms which entered different DRAM generations. An x indicates a firm’s presence in

the DRAM market. Souce: Gartner.
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Table 3: Summary Statistics
Number of Standard

Variable observations Mean Deviation Minimum Maximum
Raw variables
Average selling price 311 26.878 59.739 1.081 542.038
Industry output ×103 311 66451.13 89593.13 6 425000
Number of firms 311 12.724 5.518 1 23
Cumulative industry output 311 1346536 1564034 3 5234100
Price of silicon 311 1868.505 522.008 602.556 3533.678
GDP 311 1.42e+07 7087456 3593009 3.22e+07

Variables in logarithm
Log(Price) 311 2.046 1.449 0.078 6.295
Log(Industry output ×103) 311 9.476 2.469 1.792 12.959
Log(Number of firms) 311 2.399 0.610 0 3.136
Log(Cumulative industry output) 311 11.982 3.523 1.099 15.471
Log(Price of silicon) 311 7.496 0.274 6.401 8.17
Log(GDP) 311 16.443 0.166 16.045 16.673

Table 3 presents summary statistics. Prices are in constant US Dollars as of 1996. Several sources are

mentioned in the text.
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Table 4: Learning Effects in the DRAM Industry
Variable OLS OLS IV

Constant 6.264 5.867 5.692

(55.40)∗∗∗ (52.93)∗∗∗ (49.91)∗∗∗

Log(Cumulative industry output) -0.393 -0.467 -0.499

(-53.10)∗∗∗ (-46.43)∗∗∗ (-46.83)∗∗∗

Log(Output) 0.156 0.225

(9.99)∗∗∗ (13.14)∗∗∗

Dummy variable for 16K 0.095 -0.175 -0.293

(0.81) (-1.58) (-2.59)∗∗

Dummy variable for 64K 0.150 0.147 0.146

(1.48) (1.58) (1.54)

Dummy variable for 256K 0.526 0.346 0.267

(4.98)∗∗∗ (3.52)∗∗∗ (2.66)∗∗

Dummy variable for 1MB 0.902 0.629 0.509

(8.48)∗∗∗ (6.22)∗∗∗ (4.91)∗∗∗

Dummy variable for 2MB -0.167 -0.380 -0.474

(-1.28) (-3.13)∗∗ (-3.82)∗∗∗

Dummy variable for 4MB 0.902 0.651 0.539

(8.68)∗∗∗ (6.61)∗∗∗ (5.35)∗∗∗

Dummy variable for 8MB -0.289 -0.545 -0.658

(-1.68) (-3.41)∗∗∗ (-4.03)∗∗∗

Dummy variable for 16MB 1.127 0.783 0.631

(10.47)∗∗∗ (7.50)∗∗∗ (5.88)∗∗∗

Dummy variable for 64MB 0.848 0.451 0.275

(7.05)∗∗∗ (3.84)∗∗∗ (2.28)∗

Dummy variable for 128MB 0.718 0.269 0.072

(5.47)∗∗∗ (2.10)∗ (0.54)

Dummy variable for 256MB 0.899 0.399 0.178

(6.41)∗∗∗ (2.89)∗∗ (1.25)

Dummy variable for 256MB 0.899 0.399 0.178

(6.41)∗∗∗ (2.89)∗∗ (1.25)

Dummy variable for 1GB 0.114 -0.098 -0.191

(0.49) (-0.45) (-0.87)

Number of observations 526 526 526

R-squared adjusted 0.85 0.88 0.87

Table 4 presents learning effects (overall) for the DRAM industry. Absolute values of t-statistics are shown in

parentheses below the parameter estimates, ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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Table 5: Learning Effects in different DRAM Generations
Panel A. 16K 64K 256K 1MB 2MB

Constant 6.453 6.672 6.262 6.468 4.249

(27.44)∗∗∗ (51.01)∗∗∗ (30.81)∗∗∗ (21.02)∗∗∗ (9.98)∗∗∗

Log(Cumulative industry output) -0.401 -0.413 -0.354 -0.341 -0.215

(-20.09)∗∗∗ (-41.36)∗∗∗ (-24.16)∗∗∗ (-15.15)∗∗∗ (-5.40)∗∗∗

Number of observations 37 68 60 57 26

R-squared adjusted 0.92 0.96 0.91 0.80 0.53

Panel B. 4MB 8MB 16MB 64MB 128MB

Constant 7.806 3.609 8.443 7.754 6.063

(21.01)∗∗∗ (17.51)∗∗∗ (22.27)∗∗∗ (18.74)∗∗∗ (14.76)∗∗∗

Log(Cumulative industry output) -0.439 -0.174 -0.472 -0.441 -0.323

(-16.66)∗∗∗ (-9.13)∗∗∗ (-17.09)∗∗∗ (-14.67)∗∗∗ (-10.53)∗∗∗

Number of observations 65 12 54 35 26

R-squared adjusted 0.81 0.88 0.85 0.86 0.81

Panel C. 256MB 512MB 1GB

Constant 6.818 5.340 4.918

(13.75)∗∗∗ (32.04)∗∗∗ (29.10)∗∗∗

Log(Cumulative industry output) -0.365 -0.250 -0.155

(-9.40)∗∗∗ (-13.38)∗∗∗ (-5.96)∗∗

Number of observations 21 12 6

R-squared adjusted 0.81 0.94 0.87

Table 5 presents different learning effects for different DRAM generations. Absolute values of t-statistics are

shown in parentheses below the parameter estimates, ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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Table 6: Results for the Demand Equation
Ordinary least squares Two-stage least squares

First stage Second stage
Constant 14.057 -3.523 16.346

(24.04)∗∗∗ (-4.24)∗∗∗ (25.84)∗∗∗
Log(Average selling price) -2.415 -3.031

(-30.98)∗∗∗ (-31.22)∗∗∗
Log(Average SRAM selling price) 0.419 0.133 0.458

(4.78)∗∗∗ (4.81)∗∗∗ (5.05)∗∗∗
Time trend -0.129 -0.007 -0.179

(-14.48)∗∗∗ (-1.79) (-17.92)∗∗∗
Log(GGDP) 36.749 10.351 45.589

(2.56)∗ (2.32)∗ (3.06)∗∗
Log(Number of firms) -0.111

(-1.51)
Log(Cumulative industry output) -0.282

(-15.35)∗∗∗
Log(Price of silicon) 1.087

(11.05)∗∗∗
Dummy variable for 16K 2.564 0.174 2.675

(8.45)∗∗∗ (1.58) (8.58)∗∗∗
Dummy variable for 64K 3.943 0.528 5.126

(12.49)∗∗∗ (4.59)∗∗∗ (15.21)∗∗∗
Dummy variable for 256K 6.98 1.059 8.784

(18.10)∗∗∗ (6.45)∗∗∗ (20.98)∗∗∗
Dummy variable for 1MB 9.611 1.609 12.189

(19.85)∗∗∗ (7.75)∗∗∗ (22.75)∗∗∗
Dummy variable for 4MB 11.548 2.028 14.792

(19.25)∗∗∗ (8.04)∗∗∗ (22.18)∗∗∗
Dummy variable for 16MB 13.399 2.425 17.199

(19.43)∗∗∗ (8.32)∗∗∗ (22.35)∗∗∗
Dummy variable for 64MB 14.257 2.409 18.290

(19.09)∗∗∗ (7.65)∗∗∗ (22.04)∗∗∗
Dummy variable for 128MB 14.823 2.366 19.161

(18.73)∗∗∗ (7.37)∗∗∗ (21.83)∗∗∗
Dummy variable for 256MB 16.251 2.689 20.937

(19.48)∗∗∗ (8.06)∗∗∗ (22.50)∗∗∗
Dummy variable for 512MB 15.915 2.513 21.564

(16.76)∗∗∗ (6.49)∗∗∗ (20.02)∗∗∗
Dummy variable for 1GB 15.497 2.238 22.472

(13.32)∗∗∗ (4.47)∗∗∗ (16.11)∗∗∗
Number of observations 453 444 444
R-squared adjusted 0.76 0.93 0.71
Table 6 presents the ordinary least squares and two-stage least squares estimation results for the demand

equation. In the demand equation (columns 1 and 3), the dependent variable is the industry output.

Explanatory variables are the average selling price, a general demand shifter, and a time trend. In the reduced

form supply equation (column 2), the dependent variable is the average selling price. Explanatory variables

are the number of firms, cumulative industry output, and the price of silicon. All specifications are estimated

in logarithms and with product-specific dummy variables. Absolute values of t-statistics are shown in

parentheses below the parameter estimates. ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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Table 7: Results for the Production Policy Equation
Levels First differences

IV-GLS Lagged output Arellano Bond Bover

Variable (1) (2) (3) (4)
Constant -1.6254 401.9645 -0.0934 -0.2876

(-3.71)∗∗∗ (6.97)∗∗∗ (-0.40) (-1.64)
Demand shock -0.0314 0.0216 0.0157 0.0199

(-3.77)∗∗∗ (2.40)∗ (0.85) (1.40)
Log(Price of silicon) 0.3221 -0.3890 -0.4008 -0.3294

(5.53)∗∗∗ (-5.77)∗∗∗ (-5.84)∗∗∗ (-6.48)∗∗∗
Log(Lagged number of firms) 3.3987 0.5112 0.0305 0.2460

(48.66)∗∗∗ (4.92)∗∗∗ (0.18) (2.02)∗
Log(Cumulative past output) 0.8810 0.5403 2.2286 0.6147

(66.81)∗∗∗ (5.00)∗∗∗ (3.55)∗∗∗ (1.18)
Log(Cumulative past output of other firms) -0.6363 -0.1692 -1.0640 0.2987

(-45.72)∗∗∗ (-4.83)∗∗∗ (-2.00)∗ (0.68)
AR(1) 0.8690 -0.2051 -0.0408

(96.31)∗∗∗ (-2.43)∗ (-0.32)
Lagged output 0.5446

(7.81)∗∗∗
Time trend -0.0000 -0.0730

(-2.89)∗∗ (-6.93)∗∗∗
Dummy variable for 16K -3.2743 -7.1958 -0.1134 0.1153

(-17.34)∗∗∗ (-7.03)∗∗∗ (-0.47) (0.64)
Dummy variable for 64K -2.4125 -6.2205 -0.1856 0.1045

(-12.96)∗∗∗ (-7.13)∗∗∗ (-0.74) (0.56)
Dummy variable for 256K -3.1350 -5.3182 -0.1364 0.1168

(-16.89)∗∗∗ (-7.03)∗∗∗ (-0.56) (0.65)
Dummy variable for 1MB -2.8395 -4.4388 -0.1119 0.1415

(-15.40)∗∗∗ (-7.06)∗∗∗ (-0.46) (0.78)
Dummy variable for 4MB -2.6404 -3.6212 -0.1293 0.1397

(-14.43)∗∗∗ (-7.12)∗∗∗ (-0.53) (0.77)
Dummy variable for 16MB -2.2012 -2.8590 -0.0687 0.1630

(-12.30)∗∗∗ (-7.17)∗∗∗ (-0.29) (0.91)
Dummy variable for 64MB -1.1914 -1.9923 -0.1345 0.0898

(-6.74)∗∗∗ (-6.92)∗∗∗ (-0.56) (0.50)
Dummy variable for 128MB -0.4568 -1.4939 -0.2641 -0.0100

(-2.57)∗ (-6.35)∗∗∗ (-1.08) (-0.05)
Dummy variable for 256MB 0.4426 -0.8835 -0.1572 0.0918

(2.48)∗ (-4.54)∗∗∗ (-0.64) (0.49)
Number of observations 3635 3790 3463 3464
R-squared adjusted 0.89 0.89 0.01 0.17
Table 7 presents the instrumental variable estimation results for the incumbents’ policy function in levels and

in first differences. The dependent variable is the firm-specific output. Explanatory variables are the demand

shock, the price of silicon, the lagged number of firms in the market, firm-specific past cumulative output and

cumulative past output of all other firms. The estimations in the first two columns also has the firm-specific

lagged dependent variable on the right hand side. All specifications are estimated in logarithms and with

product-specific dummy variables. Absolute values of t-statistics are shown in parentheses below the

parameter estimates. ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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Table 8: Results for the Entry and Exit Equations
Entry Exit Exit Exit

Variable (1) (2) (3) (4)
Constant -355.0836 -520.6153 -604.6940 -554.8208

(-6.32)∗∗∗ (-6.23)∗∗∗ (-7.50)∗∗∗ (-6.46)∗∗∗
Demand shock 0.0285 -0.0728 -0.0718 -0.0864

(0.74) (-1.29) (-1.34) (-1.50)
Productivity shock (IV-GLS) -0.2689

(-3.85)∗∗∗
Productivity shock (IV-L) -0.2879

(-5.01)∗∗∗
Productivity shock (IV-FD) -0.2121

(-2.53)∗
Log(Lagged industry output) 0.0448

(0.95)
Log(Price of silicon) 0.2430 -0.3033 -0.3544 -0.3235

(0.94) (-1.06) (-1.27) (-1.11)
Log(Number of firms) 0.1534 0.1597 0.3201 0.2747

(0.95) (0.59) (1.24) (1.00)
Log(Cumulative past output) -0.3392 -0.3053 -0.3314

(-5.95)∗∗∗ (-5.83)∗∗∗ (-5.47)∗∗∗
Log(Cumulative past output of other firms) 0.2313 0.0264 0.1564

(2.24)∗ (0.35) (1.40)
Time trend 0.0605 0.0893 0.1052 0.0953

(6.38)∗∗∗ (6.28)∗∗∗ (7.67)∗∗∗ (6.52)∗∗∗
Dummy variable for 16K -1.1229 -1.1185 1.3730 -1.0262

(-1.18) (-3.52)∗∗∗ (2.47)∗ (-3.21)∗∗
Dummy variable for 64K -2.3335 -2.5804 -0.2745 -2.5720

(-2.31)∗ (-6.17)∗∗∗ (-0.46) (-6.07)∗∗∗
Dummy variable for 256K -2.8044 -4.5526 -2.4645 -4.5108

(-2.72)∗∗ (-6.45)∗∗∗ (-3.14)∗∗ (-6.27)∗∗∗
Dummy variable for 1MB -3.3529 -5.6680 -3.7131 -5.7214

(-3.15)∗∗ (-6.46)∗∗∗ (-3.99)∗∗∗ (-6.39)∗∗∗
Dummy variable for 4MB -4.1249 -6.2409 -4.3477 -6.3371

(-3.61)∗∗∗ (-6.64)∗∗∗ (-4.43)∗∗∗ (-6.62)∗∗∗
Dummy variable for 16MB -4.7035 -6.6688 -4.9653 -6.8141

(-4.02)∗∗∗ (-6.59)∗∗∗ (-4.76)∗∗∗ (-6.62)∗∗∗
Dummy variable for 64MB -5.0822 -6.7840 -5.3483 -7.0466

(-4.19)∗∗∗ (-6.38)∗∗∗ (-4.88)∗∗∗ (-6.48)∗∗∗
Dummy variable for 128MB -5.2008 -8.3458 -5.8952 -8.5164

(-4.25)∗∗∗ (-6.83)∗∗∗ (-5.10)∗∗∗ (-6.82)∗∗∗
Dummy variable for 256MB -5.2763 -8.0599 -6.8435

(-4.18)∗∗∗ (-6.44)∗∗∗ (-5.52)∗∗∗
Dummy variable for 512MB -5.8450

(-4.29)∗∗∗
Dummy variable for 1GB -4.8602

(-3.27)∗∗
Number of observations 2441 4321 4509 4086
Pseudo R-squared 0.23 0.28 0.28 0.27

Table 8 presents the estimation results from the probit models of the entry and exit distribution. In the entry

model (columns 1), the dependent variable is an indicator variable, which is equal to one when a firm enters

the market and zero before. Explanatory variables are the demand shock, price of silicon, number of firms,

and a time trend. In the exit model (columns 2-4), the dependent variable is an indicator variable, which is

equal to one when a firm exits the market and zero before. Explanatory variables are the demand shock,

productivity shock, price of silicon, number of firms, cumulative past output, and cumulative past output of

other firms. All specifications are estimated in logarithms and with firm-specific and product-specific dummy

variables. Absolute values of t-statistics are shown in parentheses below the parameter estimates. ∗∗∗ (∗∗, ∗)

denotes a 99% (95%, 90%) level of significance.
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Table 9: Results for the Structural Parameters in the (Marginal) Cost Function
Variable (1) (2)
Constant θ0 4.699

(7.06)***
Economies of scale θ1 -1.032

(215.52)***
Learning effects θ3 -0.0049

(2.83)***
Spillovers θ4 -.00040

(2.66)***
Number of observations 304

Table 9 presents the structural parameters in the (marginal) cost function. Absolute values of t-statistics are

shown in parentheses below the parameter estimates. ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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B Appendix: Figures

Figure 1: Average DRAM selling prices in USD, 1974-2004
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Figure 2: Industry units shipped, 1974-2004
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Figure 1b: DRAM selling prices in USD over different generations
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Figure 2b: Industry Units shipped in the DRAM industry over different generations
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Figure 3: Number of firms in the DRAM market, 1974-2004
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Figure 3b: Number of firms in the DRAM industry over different generations
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Figure 3c: Number of firms in the DRAM industry over different generations
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