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1 Introduction

This paper studies the interaction between a large number of uninformed principals and

a large number of informed agents in a market. Principals compete for agents by posting

contracts at some cost. Agents observe the posted contracts and try to obtain one of them.

Their ability to obtain a contract may be limited by search frictions or capacity constraints.

For example, if each principal can match with at most one agent and fewer principals offer

a particular contract than the number of agents who wish to obtain it, each agent is served

only probabilistically. If an agent obtains a contract, the contract fully specifies the terms

of trade and hence the principal’s and agent’s expected payoff.

Part of the contribution of this paper is technical: we develop a canonical extension to the

competitive search model (Montgomery, 1991; Peters, 1991; Moen, 1997; Shimer, 1996) that

allows for private information.1 We prove that in any equilibrium, principals offer separating

contracts, so different types of agents try to obtain different contracts. We use this to prove

existence of a competitive search equilibrium with private information and show that, if

multiple equilibria exist, they are Pareto ranked. On the other hand, separation is socially

costly, especially when there are relatively few of the undesirable types in the economy. A

pooling allocation may Pareto dominate the equilibrium.

We further develop our model through a series of extended examples. The first shows

that an equilibrium may not exist if the principals do not have enough instruments to screen

the desirable types from the undesirable ones. In the paper, we make assumptions that

ensure that there is a technology to separate the agents.

1See also Faig and Jerez (2005), Guerrieri (2008), and Moen and Rosén (2006).
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The second example shows how search frictions or capacity constraints resolve the nonex-

istence issue in Rothschild and Stiglitz (1976). In the original paper, the authors prove that

any equilibrium must have principals offering the least cost separating contract, with unde-

sirable agents obtaining an unconstrained contract and desirable agents obtaining a distorted

contract that does not attract the undesirables. Rothschild and Stiglitz (1976) find that,

when there are relatively few undesirable agents, an equilibrium may fail to exist. When

there are relatively few undesirable agents, a principal can make more profits by offering an

undistorted contract that attracts both types of agents, losing money on the undesirables

but more than compensating with the desirables. In a competitive search model, this devi-

ation is infeasible, regardless of the composition of the pool of agents, because of the search

friction or capacity constraint. As more agents are attracted to this undistorted contract,

each is less likely to be served. Eventually this deters some of the agents from trying to

obtain the contract, and the more desirable agents are always the first to disappear because

their alternative possibility—trying to obtain a distorted contract—is more attractive. This

means that a deviating principal only attracts undesirable agents and loses money on each

of them. Although an equilibrium always exists, a Pareto improvement is feasible if there

are sufficiently few undesirable agents.

In this example, contracts are distorted ex post, after the desirable agent has matched

with a principal. We develop a third example where the distortion occurs through the

probability of exchange. Some agents are more eager to trade than others, but the principal

prefers to trade with the agent who is less eager to trade. For example, some agents may hold

counterfeit money that they are eager to unload, while principals gain more from trading with

an agent holding genuine money. In this case, the equilibrium may involve only probabilistic

meetings for the agent holding the desirable good, even if it is feasible for each principal and

each agent to meet someone. The novelty here is that the probability of a meeting, rather

than the probability of trade within a meeting, screens out the undesirable agents. In this

example, we show that whenever an equilibrium exists, it is Pareto dominated by a pooling

allocation.

2 Model

There is a measure 1 of risk-neutral, ex-ante heterogeneous agents. A fraction πs > 0 of

agents are of type s ∈ {1, 2, . . . , S}. The type is the agent’s private information. Moreover,

there is a large measure of risk neutral ex-ante homogeneous principals.

We study a static model, with only a single opportunity to match. At the start of time,

each principal can post a contract C by paying a cost k. The next paragraph describes
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contracts in more detail. Each agent observes the set of posted contracts and tries to obtain

one of them. Then matching takes place. If the ratio of principals offering contract C

to agents seeking that contract, hereafter the market tightness, is θ, each agent finds a

principal with probability µ(θ) ∈ [0, 1] and each principal finds an agent with probability

µ(θ)/θ ∈ [0, 1], where µ is an increasing, concave function and µ(θ)/θ is decreasing in θ.

Since all agents who apply for a contract are equally likely to succeed, the probability that

when a principal finds an agent, her type is s, is equal to the fraction of agents seeking that

contract whose type is s, say ps ∈ [0, 1]. Matched principals and agents implement the terms

of the contract and obtain the implied payoffs. Principals and agents who do not match get

their outside option, which we normalize to 0.

A contract C consists of two parts: a revelation mechanism Y = {y1, y2, . . . , yS} that

specifies the terms of trade between a principal and an agent who reports her type is s ∈

{1, 2, . . . , S}; and a recommendation θ ≥ 0 and P = {p1, p2, . . . , pS}, where ps ≥ 0 and
∑

s ps = 1. Here θ is the recommended market tightness associated with the contract and ps

is the recommended share of type s agents among the pool of agents seeking that contract.

We assume ys ∈ Y for all s, a compact set. We invoke the revelation principal and focus

on contracts where agents truthfully reveal their type when they match with a principal

and where recommendations are followed; of course it is necessary to restrict attention to

incentive compatible contracts, which we define below. The expected profit for a principal

offering a direct revelation contract C = {Y, P, θ} is

µ(θ)

θ

S
∑

s=1

psvs(ys) − k, (1)

where vs(ys) is the principal’s payoff from terms of trade ys with agent s, continuous and

bounded for all y ∈ Y. The expected utility of a type-s agent who applies for this contract

and reports her type is s′ is

µ(θ)us(ys′), (2)

where us(ys′) is a type-s agent’s payoff from terms of trade ys′, continuous and bounded for

all y ∈ Y. Note that the terms of trade ys is itself typically a vector, for example specifying

a transfer and an action by the agent.

Definition 1 Let C denote the set of incentive-compatible contracts. A contract C = {Y, P, θ}

is incentive compatible if and only if us(ys) ≥ us(ys′), for all s, s′.

We are now in a position to define an equilibrium. In a competitive search equilibrium,

all principals assume that they cannot affect the expected utility of a type-s agent, say Ūs.
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If a particular incentive compatible contract C = {Y, P, θ} offers a type-s agent less utility

than Ūs, she will be unwilling to look for that contract. If it offers her more utility, type-s

agents will apply in greater numbers than implied by the tightness θ, and so this cannot be

an equilibrium. In order to attract type-s agents, a contract must offer exactly Ūs. More

precisely:

Definition 2 A Competitive Search Equilibrium is a vector Ū ∈ RS
+ and a measure λ on C

with support C satisfying

1. for any contract C = {Y, P, θ} ∈ C,

(a) principals’ free entry requires
µ(θ)

θ

S
∑

s=1

psvs(ys) = k and

(b) type-s agents’ optimal search requires Ūs ≥ µ(θ)us(ys) with equality if ps > 0;

2. for any incentive compatible contract C′ = {Y ′, P ′, θ′} ∈ C, the following two conditions

cannot both be satisfied:

(a) principals earn positive profits:
µ(θ′)

θ′

S
∑

s=1

p′svs(y
′
s) > k, and

(b) agents’ search is optimal: for all s, Ūs ≥ µ(θ)us(y
′
s) with equality if ps > 0;

3. markets clear: for all s,
1

θ

∫

psdλ({Y, P, θ}) ≤ πs, with equality if Ūs > 0.

Condition (1a) ensures that principals earn zero profits in equilibrium. Condition (1b)

implies that agents are attracted to a contract only if it delivers utility Ūs and that no contract

delivers more utility. Condition (2) ensures that there is no other incentive compatible

contract that a principal could offer and make positive profits. Here (2b) ensures that when

a principal considers offering such a contract, it recognizes that agents will allocate their

search so as to ensure that this contract is no more attractive than any other contract and

will not search for it unless it is equally attractive. Finally, condition (3) ensures that type-s

agents search for some contract, unless they are indifferent about matching in equilibrium,

Ūs = 0.

For the most part, this definition of competitive search equilibrium is standard; see for

example Acemoglu and Shimer (1999). The most novel piece is that we treat the recom-

mendation {P, θ} as part of the contract C. The literature previously would have treated

a contract as a revelation mechanism, C = Y , and substituted the recommendations with

functions of the mechanism Y , say schedules Θ(Y ) and Π(Y ). Principals and agents both

anticipate that if a principal offers a contract Y , the associated market tightness will be
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θ = Θ(Y ) and the associated share of each type of agent will be P = Π(Y ). This spec-

ification does not permit two principals to offer identical revelation mechanisms, with one

intending to attract type-1 agents while the other intends to attract type-2 agents, possibly

with a different market tightness. Making the recommendation part of the contract allows

for this possibility. With only one type of agent, i.e. in most of the previous literature, this

distinction is immaterial. In any case, the recommendation is only cheap talk. A principal

cannot force type-s agents to search for his contract if they do not want to, nor can he keep

them away if the contract would offer them more utility than Ūs.

3 Characterization

The first step in characterizing an equilibrium is showing that it is equivalent to the solution

to a set of constrained optimization problems:

Proposition 1 If a vector Ū ∈ RS
+ and a measure λ on C with support C is a Competitive

Search Equilibrium, then any {Y, P, θ} ∈ C solves

k = max
Y,P,θ

µ(θ)

θ

S
∑

s=1

psvs(ys) (P1)

s.t. us(ys) ≥ us(ys′) for all s, s′,

and Ūs ≥ µ(θ)us(ys) with equality if ps > 0 for all s.

Conversely, if there exists a vector Ū and a measure λ such that each {Y, P, θ} ∈ C solves

problem (P1) and market clearing holds, then there exists a Competitive Search Equilibrium

{Ū , λ}.

Proof. First suppose {Ū , λ} is a competitive search equilibrium. Take any {Y, P, θ} ∈ C.

Part (1a) of the definition of competitive search equilibrium implies that the value of the

objective function in problem (P1) must be k. {Y, P, θ} ∈ C ensures it satisfies the first

constraint in problem (P1), while part (1b) ensures it satisfies the second constraint. Now

take any other vector {Y ′, P ′, θ′} that satisfies the constraints in (P1). Since us(y
′
s) ≥ us(y

′
s′)

for all s and s′, the alternative contract is incentive compatible, {Y ′, P ′, θ′} ∈ C. Moreover,

the second constraint in problem (P1) implies that the alternative contract satisfies condition

(2b). Therefore part (2a) of the definition of equilibrium implies k ≥ µ(θ′)
θ′

∑S

s=1 p′svs(y
′
s).

Thus {Y, P, θ} delivers a higher value in problem (P1) than any other vector satisfying the

constraints, i.e. it solves the constrained optimization problem (P1).
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Conversely, suppose there exists a vector Ū and a measure λ such that each {Y, P, θ} ∈ C

solves problem (P1) and market clearing holds. Part (1a) of the definition of equilibrium

follows from the objective function in (P1), while (1b) follows from the second constraint.

Moreover, if part (2) of the definition of equilibrium failed, there would be an alternative

contract that satisfied the constraints in (P1) and delivered a higher value than k, a contra-

diction.

To further aid in finding a competitive search equilibrium, we next prove that without

loss of generality we can restrict attention to equilibria where each contract is designed to

attract only one type of agent. Moreover, in such an equilibrium, there is no need to ask an

agent her type once she matches with the principal; each principal gives all agents the same

terms of trade.

Lemma 1 Suppose there exists an equilibrium {Ū , λ} with some contract C = {Y, P, θ} with

dλ(C) > 0 and either ps, ps′ > 0 or ys 6= ys′ for some s 6= s′. Let {{ys}, 1s, θ} denote a

contract that offers all agents terms of trade ys and attracts only type s agents (ps = 1).

Then there exists an equilibrium {Ū , λ̃} such that dλ̃(C) = 0, dλ̃({ys}, 1s, θ) = psdλ(C) for

all s and s′, and dλ̃(C′) = dλ(C) otherwise.

Proof. Consider an equilibrium {Ū , λ} with some contract C = {Y, P, θ} such that dλ(C) > 0

and ps, ps′ > 0 for some s 6= s′. For this contract to solve problem (P1), it must be the case

that vs(ys) = vs′(ys′). For example, if vs(ys) > vs′(ys′), the contract {Y, 1s, θ} would yield a

higher value of the objective function in (P1) without modifying any of the constraints.

Now consider the contract Cs ≡ {{ys}, 1s, θ}. The value of the objective function in (P1)

is unchanged at k = µ(θ)
θ

vs(ys). Moreover, the constraints are satisfied. The first constraint

holds because ys = ys′ for all s′. The second constraint holds for s because Ūs = µ(θ)us(ys)

from the fact that the original contract C solved (P1). It holds for arbitrary s′ because

Ūs′ ≥ µ(θ)us′(ys′) ≥ µ(θ)us′(ys); the first inequality holds because the original contract C

satisfied the last constraint in (P1), while the second inequality holds because C satisfied the

first constraint. Since Cs is feasible and payoff equivalent to C, it solves problem (P1).

Finally, we construct a separating equilibrium {Ū , λ̃} where dλ̃(Cs) = psdλ(C) and

dλ̃(C′) = dλ(C′) for any other C′. This {Ū , λ̃} is an equilibrium, given that the contracts

posted solve problem (P1) and market clearing is satisfied.

This lemma allows us to restrict attention to equilibria where each contract is designed

to attract only one type of agent. This means that a contract designed to attract type s is

characterized by ps = 1 and ps′ = 0 for all s′ 6= s. Hence, with a slight abuse of notation,

we can represent a contract designed for type s simply by a pair {ys, θs}, where ys denotes

the terms of trade for agents who obtain this contract and θs is the recommended market
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tightness. Note that the subscript s denotes the type of agents that are supposed to search

for this contract.

According to problem (P1), for each s, the contract {ys, θs} solves the following con-

strained maximization problem:

k =max
y,θ

µ(θ)

θ
vs(y) (P2)

s.t. Ūs = µ(θ)us(y)

and Ūs′ ≥ µ(θ)us′(y) for all s′.

Finding a competitive search equilibrium now amounts to finding a vector {Ūs} consistent

with problem (P2) for all s. It is easier to work with the dual of this problem:

Lemma 2 Let the contract {ys, θs} solve

Ūs = max
y,θ

µ(θ)us(y) (P3)

s.t.
µ(θ)

θ
vs(y) = k

and Ūs′ ≥ µ(θ)us′(y) for all s′ 6= s.

If the first constraint is binding, so Ūs < maxy,θ µ(θ)us(y) subject to Ūs′ ≥ µ(θ)us′(y), this

contract also solves problem (P2).

Proof. Suppose {ys, θs} solves problem (P2). Construct the Lagrangian

L(y, θ, λ) = λ0
µ(θ)

θ
vs(y) +

S
∑

i=1

λi

(

Ūi − µ(θ)ui(y)
)

.

The Fritz John version of Lagrange’s theorem (see, for example, Simon and Blume, 1994)

states that there are numbers λ∗
0, λ

∗
1, . . . , λ

∗
S, not all zero, with λ∗

i ≥ 0 for i 6= s and λ∗
0 ∈

{0, 1}, such that

∂L

∂y
=

∂L

∂θ
=

∂L

∂λs

= 0,
∂L

∂λi

≥ 0, i 6= 0, s, and λi

∂L

∂λi

= 0, i 6= 0, s,

when evaluated at {ys, θs, λ
∗}.

Similarly, if {ys, θs} solves problem (P3), construct the Lagrangian

L̃(y, θ, λ̃) = λ̃sµ(θ)us(y) + λ̃0

(

µ(θ)

θ
vs(y) − k

)

+
∑

i6=s,0

λ̃i

(

Ūi − µ(θ)ui(y)
)

.
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There are numbers λ̃∗
0, λ̃

∗
1, . . . , λ̃

∗
S, not all zero, with λ̃∗

i ≥ 0 for all i 6= 0 and λ̃∗
s ∈ {0, 1}, such

that
∂L̃

∂y
=

∂L̃

∂θ
=

∂L̃

∂λ̃0

= 0,
∂L̃

∂λ̃i

≥ 0, i 6= 0, s, and λ̃i

∂L̃

∂λ̃i

= 0, i 6= 0, s,

when evaluated at {ys, θs, λ̃
∗}.

Now suppose Ūs < maxy,θ µ(θ)us(y) subject to Ūs′ ≥ µ(θ)us′(y), so the constraint
µ(θ)

θ
vs(y) = k is binding. That is, λ̃∗

0 > 0. We conjecture that λ∗
i = λ̃∗

i /λ̃
∗
0 for all i 6= s, with

λ∗
0 = 1 and λ∗

s = −λ̃∗
s/λ̃

∗
0. Then substituting into the definitions of L and L̃, we find that

L(y∗, θ∗, λ∗) =
L̃(y∗, θ∗, λ̃∗) − λ̃∗

sŪs

λ̃∗
0

+ k.

Then it is straightforward to verify that

∂L̃

∂y
= 0 ⇒

∂L

∂y
= 0,

∂L̃

∂θ
= 0 ⇒

∂L

∂θ
= 0,

∂L̃

∂λ̃i

≥ 0 ⇒
∂L

∂λi

≥ 0, i 6= 0, s,

and λ̃i

∂L̃

∂λ̃i

= 0 ⇒ λ̃i

∂L

∂λi

= 0, i 6= 0, s.

Also, ∂L/∂λs = (∂L̃/∂λs − Ūs)/λ̃
∗
0 = 0 since ∂L̃/∂λs = µ(θs)us(ys). In other words, as long

as the constraint on the principal’s zero profit condition is binding, λ̃∗
0 > 0, any solution to

problem (P3) also solves problem (P2).

It is straightforward to prove that a solution to problem (P3) exists:

Lemma 3 There exists a vector Ū such that problem (P3) is solved for all s. Moreover, if

there are multiple solutions, there is one that achieves a higher value than all others.

Proof. Let Ū∗
s = maxy,θ µ(θ)us(y) subject to µ(θ)

θ
vs(y) = k. Let Ū∗ = {Ū∗

1 , . . . , Ū∗
S} and

define the mapping T : [0, Ū∗] 7→ [0, Ū∗] with

Ts(Ū) =max
y,θ

µ(θ)us(y)

s.t.
µ(θ)

θ
vs(y) = k

and Ūs′ ≥ µ(θ)us′(y) for all s′ 6= s.
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Since this optimization problem maximizes a continuous function on a compact set, Ts(Ū)

is defined. T is nondecreasing because higher Ūs′ enlarges the constraint set. Given this

and the fact that the set [0, Ū∗] is a complete lattice, Tarski’s fixed point theorem implies

that there exists a fixed point Ū and that the set of fixed points has a largest (and smallest)

element.

Tarski’s Fixed-Point Theorem provides an algorithm for finding the set of equilibria.

Corollary 1 The highest (lowest) solution to problem (P3) can be found by applying the

operator T to the highest (lowest) element of the domain, Ū∗ (0), and iterating until conver-

gence.

Now we can establish when an equilibrium exists.

Proposition 2 Let Ūs solve problem (P3) for all s, with associated allocations {ys, θs}. As-

sume the first constraint in the problem binds for all s. Then Ū and the associated allocations

are a competitive search equilibrium.

Proof. Because the first constraint in problem (P3) binds for all s, {ys, θs} solves problem

(P2) and so is a competitive search equilibrium.

4 Efficiency

We turn next to our notion of efficiency. We start by defining an incentive compatible and

feasible allocation.

Definition 3 An allocation is a measure λ over the set of incentive-compatible contracts C,

with support C.

It is feasible whenever (1) the posted contracts offer the maximal level of expected utility

to the agents who are recommended to search for it and no more utility to those who are

not; (2) the economy’s resource constraint is satisfied; and (3) the recommendations are

consistent with the population distribution. Formally:

Definition 4 Let Λ denote the set of incentive feasible allocations. An allocation is incentive

feasible if

1. for any (Y, P, θ) ∈ C, Ūs ≥ µ(θ)us(ys) with equality if ps > 0, where

Ūs ≡ max
Y ′,P ′,θ′∈C

µ(θ′)us(y
′
s);
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2.

∫

(

µ(θ)

θ

S
∑

s=1

psvs(ys) − k

)

dλ(Y, P, θ) = 0

3.
1

θ

∫

psdλ(Y, P, θ) ≤ πs, with equality if Ūs > 0

An allocation is Pareto optimal if it maximizes the weighted average of expected utilities of

agents:

Definition 5 An allocation is Pareto optimal if it solves max
λ∈Λ

S
∑

s=1

ωsŪs for some {ωs}.

To study the Pareto optimal allocations, we use a result similar to the one derived in

the equilibrium analysis. The next Lemma states that any Pareto optimal allocation can

be represented as a “left separating allocation,” that is, an allocation such that each posted

contract is designed to attract only one type of agents.2

Lemma 4 Suppose there exists a Pareto optimal allocation λ, with associated Ū , such that

some contract C = {Y, P, θ} with dλ(C) > 0 and either ps, ps′ > 0 or ys 6= ys′ for some s 6= s′.

Let {{ys}, 1s, θ} denote a contract that offers all agents terms of trade ys and attracts only

type s agents (ps = 1). Then there exists a Pareto optimal allocation λ̃, associated to the

same Ū , such that dλ̃(C) = 0, dλ̃({ys}, 1s, θ) = psdλ(C) for all s and s′, and dλ̃(C′) = dλ(C)

otherwise.

Given this Lemma, with a slight abuse of notation, we can represents by {ys, θs} the

contract that attracts type s, which implies that Ūs = µ(θs)us(ys). Define Ỹ ≡ {ys}s and

θ̃ ≡ {θs}s. Using Lemma 4, we can immediately simplify the characterization of a Pareto

optimal allocation:

Proposition 3 An allocation is Pareto optimal if and only if it can be represented as a pair

of S-dimensional vectors {Ỹ , θ̃} that solve the following problem:

max
Ỹ ,θ̃

S
∑

s=1

ωsµ(θs)us(ys) (P4)

s.t. µ(θs)us(ys) ≥ µ(θs′)us(ys′) for all s, s′

and
S
∑

s=1

(

µ(θs)

θs

vs(ys) − k

)

θsπs = 0.

2The proof of this lemma is analogous to the proof of Lemma 1 and therefore omitted.
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5 Examples

5.1 Nonexistence

We start by constructing an example in which an equilibrium does not exist. Principals

would like to screen agents because some are more productive than others. The problem

is that agents have identical preferences and so there is no way to screen them. That is,

a principal would always like to announce that he only wants the most productive agents.

If he could do so, competition among principals would ensure that more productive agents

fare better. But then less productive agents would imitate more productive ones, and so

this cannot be an equilibrium. On the other hand, there cannot be an equilibrium where

principals do not screen agents, because each principal would request that only the most

productive agents seek his contract.

Suppose S = 2 and a contract consists only of a transfer from the principal to the agent,

y = t. Agents’ preferences are us(t) = t and principals’ preferences are vs(t) = bs − t, with

b1 < b2. Assume 0 ≤ t ≤ b2, so both the principals’ and agents’ payoffs are continuous and

bounded. Since u1(t) = u2(t), the constraints in problem (P2) for s = 1 requires Ū2 ≥ Ū1,

while the constraints in the problem for s = 2 require Ū1 ≥ Ū2. Thus any equilibrium must

have Ū1 = Ū2; if the agents have the same preferences, they must get the same level of utility.

But the two problems (P2) are not identical. Substituting the constraint Ūs = µ(θ)t into

the objective function, the market tightness θs must solve maxθ(µ(θ)bs − Ūs)/θ, and both

maximized values must equal k. Since Ū1 = Ū2 and b1 6= b2, this is impossible.

It is worth noting what goes wrong in problem (P3) in this case. We look for the best

possible equilibrium and so first solve the problem

Ūs = max
t,θ

µ(θ)t s.t.
µ(θ)

θ
(bs − t) = k.

That is, we ignore the constraint that the other type of agent must prefer not to seek this

contract. Eliminate t using the constraint to get

Ūs = max
θ

(

µ(θ)bs − θk
)

.

If b1 < b2, this implies Ū1 < Ū2. Denote the solution by {ts, θs}, s = 1, 2. It is easy to

verify that the last constraint in problem (P3) for type-2 agents is violated, Ū1 < µ(θ2)t2.
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We therefore must solve the full problem,

Ū2 =max
t,θ

µ(θ)t

s.t.
µ(θ)

θ
(b2 − t) = k

and Ū1 ≥ µ(θ)t.

The Fritz John Lagrangian becomes

L̃(t, θ, λ̃) = λ̃2µ(θ)t + λ̃0

(

µ(θ)

θ
(b2 − t) − k

)

+ λ̃1

(

Ū1 − µ(θ)t
)

.

The first order conditions for t and θ are

µ(θ2)(λ̃
∗
2 − λ̃∗

1) −
µ(θ2)

θ2

λ̃∗
0 = 0

µ′(θ2)t2(λ̃
∗
2 − λ̃∗

1) +

(

µ′(θ2)

θ2

−
µ(θ2)

θ2
2

)

(b2 − t2)λ̃
∗
0 = 0

The solution to these equations has λ̃∗
0 = 0 and λ̃∗

1 = λ̃∗
2 = 1, with t2 and θ2 determined by

the solution to the two binding constraints. In particular, this gives Ū2 = Ū1. The problem

for the type-1 agents is unchanged, and so we have found the largest solution to problem

(P3). But critically, λ̃∗
0 = 0 at this solution and so Lemma 2 is inapplicable. In particular,

this solution need not, and in this case does not, solve problem (P2).

5.2 Existence of a Least Cost Separating Equilibrium

Our next example introduces a technology for separating the agents.3 Moving directly to

the language of separating contracts, a revelation mechanism now consists of two pieces,

ys = {ts, xs}, where ts denotes the transfer from the principal to the agent and xs ≥ 0

denotes a costly signal that the agent must make. The expected utility of a type-s′ agent

who searches for a contract {ts, xs, θs} is

µ(θs)

(

ts −
xs

as′

)

,

3This example is based on Inderst (2005). We discuss the relationship between his model and ours in
more detail below.
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where higher values of as′ implies that the action xs is less costly. The expected profit of a

principal who offers this contract is

µ(θ)

θ
(bs − ts) − k,

where bs is the productivity of a type-s agent. Assume S = 2 and without loss of generality

that type-2 agents are more productive than type-1 agents, b2 > b1. Also assume that they

find the costly signal cheaper to provide, a2 > a1.
4

We characterize an equilibrium using problem (P3). Thus we must find numbers Ū1 and

Ū2 and contracts {t1, x1, θ1} and {t2, x2, θ2} such that

Ūs = max
t,x≥0,θ

µ(θ)

(

t −
x

as

)

subject to
µ(θ)

θ
(bs − t) = k

and Ūs′ ≥ µ(θ)

(

t −
x

as′

)

for s′ 6= s.

for s = 1, 2. We claim the following result:

Result 1 There exists a unique competitive search equilibrium, described by

µ′(θs)bs = k for s = 1, 2;

ts = bs −
θs

µ(θs)
k for s = 1, 2;

and x1 = 0, x2 =
a1

µ(θ2)

[(

µ(θ2)

µ′(θ2)
− θ2

)

−

(

µ(θ1)

µ′(θ1)
− θ1

)]

k.

Moreover,

Ū1 =

(

µ(θ1)

µ′(θ1)
− θ1

)

k

and Ū2 =

[

a1

a2

(

µ(θ1)

µ′(θ1)
− θ1

)

+

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)]

k.

We prove this result by finding the best and worst solutions to problem (P3), verifying

that they coincide, and verifying that the multiplier on the principal’s zero profit condition

is positive at the solution, so the solution to problem (P3) also solves the dual problem (P2).

4To keep the principals’ and agents’ payoffs bounded, we can restrict the space of mechanisms to those
with ts ∈ [0, b2] and xs ∈ [0, b2a2]. Any other mechanism would imply negative expected payoffs to either
the principal or the agent.
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Best Equilibrium. We start by finding the vector Ū∗ = {Ū∗
1 , Ū∗

2} where Ū∗
s solves the

problem of maximizing the utility of type-s agents subject to the free entry condition and

ignoring the constraint that type-s′ agents must be excluded from the market. That is,

Ū∗
s = max

t,x≥0,θ
µ(θ)

(

t −
x

as

)

subject to
µ(θ)

θ
(bs − t) = k.

Eliminate t using the constraint to get

Ū∗
s = max

x≥0,θ
µ(θ)

(

bs −
x

as

)

− θk.

The solution sets x = 0 and θ = θs, where θs solves the necessary and sufficient first order

condition

µ′(θs)bs = k.

Since µ is concave, θ1 < θ2. Plugging this back into the original problem, the unconstrained

value of agents’ solves

Ū∗
s =

(

µ(θs)

µ′(θs)
− θs

)

k.

Again using concavity of µ, µ(θs)
µ′(θs)

− θs is increasing in θ and so Ū∗
1 < Ū∗

2 .

Next we apply the operator T , where

Ts(Ū) = max
t,x≥0,θ

µ(θ)

(

t −
x

as

)

subject to
µ(θ)

θ
(bs − t) = k

and Ūs′ ≥ µ(θ)

(

t −
x

as′

)

for s′ 6= s,

starting from Ū = Ū∗, to find the best fixed point.

1. First compute T1(Ū
∗) = Ū∗

1 , since Ū∗
2 > µ(θ1)t1 = Ū∗

1 . To compute T2(Ū
∗), the same

logic implies that the constraint Ū∗
1 ≥ µ(θ2)t2 = Ū∗

2 is binding. Eliminate t and x from

the objective function using the two binding constraints to get

T2(Ū
∗) = max

θ

[

a1

a2
Ū∗

1 +

(

1 −
a1

a2

)

(µ(θ)b2 − θk)

]

=

[

a1

a2

(

µ(θ1)

µ′(θ1)
− θ1

)

+

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)]

k,
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where still θs solves µ′(θs)bs = k.

2. Now compute T1(T (Ū∗)) = T1(Ū
∗) = Ū∗

1 , since T2(Ū
∗) > µ(θ1)t1 = T1(Ū

∗). That

is, the problem for the type-1 agents is still unconstrained by the type-2 agents. On

the other hand, since T1(Ū
∗) = Ū∗

1 , the problem for the type-2 agents is unchanged, so

T2(T (Ū∗)) = T2(Ū
∗). Thus we have found the highest fixed point, the best equilibrium.

Clearly the utility levels coincide with those described in Result 1. It is also straightforward

to solve problem (P3) to verify the equilibrium revelation mechanisms.

Worst Equilibrium. Now we start with Ūs = 0 for s = 1, 2 to find the worst equilibrium.

For low values of Ūs′, the inequality constraints in both problems (P3) binds. Use the two

binding constraints to eliminate t and x from the problem:

Ts(Ū) = max

{

0, max
θ

[

as′

as

Ūs′ +

(

1 −
as′

as

)

(µ(θ)bs − θk)

]}

= max

{

0,
as′

as

Ūs′ +

(

1 −
as′

as

)(

µ(θs)

µ′(θs)
− θs

)

k

}

.

Note that Ts(Ū) ≥ 0 because it is always possible to set θs = µ(θs) = 0. We now proceed to

apply the operator T .

1. First compute T (0):

T1(0) = 0 and T2(0) =

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)

k.

2. Next compute T 2(0). Since T1(0) = 0, T2(T (0)) = T2(0). There are two possibilities

for T1(T (0)). First, the constraint T2(0) ≥ µ(θ)(t− x/a2) may be slack in the problem

for type-1 agents. In this case, type-1 agents solve the unconstrained problem, giving

T1(T (0)) =

(

µ(θ1)

µ′(θ1)
− θ1

)

k.

Alternatively, it is binding, in which case

T1(T (0)) =

(

a2

a1
− 1

)[(

µ(θ2)

µ′(θ2)
− θ2

)

−

(

µ(θ1)

µ′(θ1)
− θ1

)]

k.

3. Now compute T 3(0). Since T2(T (0)) = T2(0), T1(T
2(0)) = T1(T (0)). In the problem
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for type-2 agents, the constraint T1(T (0)) ≥ µ(θ)(t − x/a1) will always bind. Thus

T2(T
2(0)) =

a1

a2
T1(T (0)) +

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)

k.

If in the previous step, type-1 agents solved the unconstrained problem, this reduces

to

T2(T
2(0)) =

[

a1

a2

(

µ(θ1)

µ′(θ1)
− θ1

)

+

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)]

k.

Note that this means Ts(T
2(0)) = Ūs, s = 1, 2, where Ūs is defined in Result 1.

Since the values coincide with the best possible equilibrium, we have found the worst

equilibrium, and it coincides with the best. Alternatively, if type-1 agents’ problem

was constrained in the previous step,

T2(T
2(0)) =

(

1 −
a1

a2

)[

2

(

µ(θ2)

µ′(θ2)
− θ2

)

−

(

µ(θ1)

µ′(θ1)
− θ1

)]

k.

4. In general, in step n we compute T n(0). If n is even, T2(T
n−1(0)) = T2(T

n−2(0)) since

T1(T
n−2(0)) = T1(T

n−3(0)). There are always two possibilities for T1(T
n−1(0)): the

constraint T2(T
n−2(0)) ≥ µ(θ)(t − x/a2) may be slack, in which case type-1 agents

solve the unconstrained problem, giving

T1(T
n−1(0)) =

(

µ(θ1)

µ′(θ1)
− θ1

)

k.

Or it may be binding, in which case

T1(T
n−1(0)) =

n

2

(

a2

a1

− 1

)[(

µ(θ2)

µ′(θ2)
− θ2

)

−

(

µ(θ1)

µ′(θ1)
− θ1

)]

k.

5. If n is odd, T1(T
n−1(0)) = T1(T

n−2(0)) since T2(T
n−2(0)) = T2(T

n−3(0)). If in the

previous step type-1 agents solved the unconstrained problem, we obtain Ts(T
n(0)) =

Ūs, s = 1, 2, where Ūs is defined in Result 1. Otherwise

T2(T
n−1(0)) =

(

1 −
a1

a2

)[

n + 1

2

(

µ(θ2)

µ′(θ2)
− θ2

)

−
n − 1

2

(

µ(θ1)

µ′(θ1)
− θ1

)]

k.

6. The sequence T2(T
n−2(0)), n even, increases linearly in n. This implies that at some

finite n, the constraint T2(T
n−2(0)) ≥ µ(θ)(t − x/a2) is slack. At this point, we have

found the worst equilibrium, and it coincides with the best.
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Multiplier on the Zero-Profit Condition. All that remains is to verify that the mul-

tiplier on the zero-profit condition is binding. Type-1 agents solve

max
t,x≥0,θ

µ(θ)

(

t −
x

a1

)

subject to
µ(θ)

θ
(b1 − t) = k,

while type-2 agents solve

max
t,x≥0,θ

µ(θ)

(

t −
x

a2

)

subject to
µ(θ)

θ
(b2 − t) = k

and

(

µ(θ1)

µ′(θ1)
− θ1

)

k ≥ µ(θ)

(

t −
x

a1

)

.

It is straight-forward to verify in both cases that the multiplier on the constraint µ(θ)
θ

(bs−t) =

k is nonzero, so the value of the problem is higher without this constraint. Thus we have

found all the solutions to problem (P3) and proved that any such solution solves problem

(P2). This characterizes the set of equilibria.

Alternative Characterization of Equilibrium. An alternative method of finding the

fixed point involves less algebra but also does not demonstrate the power of Tarski’s fixed

point theorem in our environment.

With slight abuse of notation, define the functions Ts(Ūs′) with s′ 6= s (instead Ts(Ū)

where Ū = {Ū1, Ū2}. Then Ts : [0, Ū∗
s′] 7→ [0, Ū∗

s ]. A fixed point is characterized by an

intersection of these two functions, such that

Ts(Ts′(Ūs)) = Ūs.

The function Ts(Ūs′) is defined as follows:

Ts(Ūs′) = max
t,x≥0,θ

µ(θ)

(

t −
x

as

)

subject to
µ(θ)

θ
(bs − t) = k

and Ūs′ ≥ µ(θ)

(

t −
x

as′

)

.

First, notice that if Ts(Ūs′) = Ū∗
s , that is, the solution is the unconstrained optimum, then
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at the optimum x = 0. The only condition that needs to be checked to be sure that the

unconstrained optimum is feasible is Ūs′ ≥ Ū∗
s . Hence, Ts(Ūs′) = Ū∗

s for any Ūs′ ≥ Ū∗
s . If

instead Ūs′ < Ū∗
s , then the constraint is binding and the problem becomes

Ts(Ūs′) =max
θ

as′

as

Ūs′ +

(

1 −
as′

as

)

(µ(θ)bs − θk)

subject to Ūs′ ≥ µ(θ)bs − θk.

Notice that for s = 1, the coefficient 1−a2/a1 is negative and the constraint is binding, that

is, x = 0, so that Ū1 = Ū2. For s = 2, instead, the coefficient 1 − a1/a2 is positive, so that

the solution is

Ū2 =
a1

a2
Ū1 +

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)

k,

where θ2 solves

µ′(θ2)b2 = k.

Hence the functions are

T1(Ū2) =







Ū∗
1 if Ū2 ≥ Ū∗

1

Ū2 if Ū2 < Ū∗
1

T2(Ū1) =











Ū∗
2 if Ū1 ≥ Ū∗

2

a1

a2
Ū1 +

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)

k if Ū1 < Ū∗
2

Figure 1 plots these two functions. It is straightforward to see that there exists a unique

equilibrium given that Ū∗
1 < Ū∗

2 .

Pareto Improvement. We now propose a feasible allocation that Pareto improves on

the Competitive Search Equilibrium. We restrict attention to allocations that treat the two

types identically, t1 = t2 = t, x1 = x2 = x, and θ1 = θ2 = θ. Then problem (P4) reduces to

max
t,x≥0,θ

µ(θ)

(

t −
ω1x

a1
−

ω2x

a2

)

subject to µ(θ)(π1b1 + π2b2 − t) = θk

The incentive constraints are automatically satisfied since the contracts are identical. More-

over, it is straightforward to see that x = 0, given that it decreases the objective function and

does not appear in the constraint. Then eliminate t from the objective using the constraint
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Ū1

Ū2

45◦

Ū∗
2

Ū∗
1 = Ū1

Ū2

T1(Ū2)

T2(Ū1)

Figure 1: Alternative Characterization of Equilibrium. An equilibrium is at the fixed point
T1(T2(Ū1)) = Ū1.

to get

max
θ

(

µ(θ)(π1b1 + π2b2) − θk
)

.

The solution is to set θ = θ∗ solving µ′(θ∗)(π1b1 + π2b2) = k. Since b1 < b2, θ1 < θ∗ < θ2.

Moreover, all agents’ expected utility is now

Ū =

(

µ(θ∗)

µ′(θ∗)
− θ∗

)

k.

Compare this with the solution in result 1. Since θ∗ > θ1, trivially Ū > Ū1. On the other

hand, Ū ≥ Ū2 if and only if

µ(θ∗)

µ′(θ∗)
− θ∗ ≥

a1

a2

(

µ(θ1)

µ′(θ1)
− θ1

)

+

(

1 −
a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)

.

This always holds if a1/a2 is sufficiently close to 1 (screening is very costly) or if π1 is

sufficiently close to zero (there are a few type-1 agents). The reason is that in equilibrium,

principals that want to attract type-2 agents need to screen out type-1 agents. If one principal

failed to do so, he would be swamped by them. This may not be socially optimal, however. If

there are few type-1 agents or screening is very costly, it is optimal to cross-subsidize type-1

agents and eliminate the need for costly screening.

Relationship to Rothschild and Stiglitz (1976). The structure of this example is

similar to the classic insurance model of Rothschild and Stiglitz (1976). Adapting to our

environment, they prove that, if there is an equilibrium, it must be the least cost separating
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equilibrium, where principals that attract type-2 agents use the costly screening technology

to keep out type-1 agents. They then argue that there may be a profitable deviation, where

principal offers a pooling contract that attracts both types of agents. This occurs exactly in

the case when the least separating contract is Pareto inefficient.

Such a deviation is never feasible in our environment. Whereas in Rothschild and Stiglitz

(1976), a deviating principal can attract and serve all the agents in the economy, or at least

a representative cross-section of agents, this is not the case in our economy. The key is

the search friction or capacity constraint. A single principal does not have the ability to

serve all the agents who would potentially be attracted to a contract. Instead they are

rationed thorough the endogenous movement in market tightness θ. The key to whether

such a deviation is profitable then is understanding which agents are most willing to accept

a decline in market tightness. In this model, type-2 agents will quickly give up on the pooling

contract if it is too crowded with type-1 agents. Type-1 agents, who have a lower outside

option, Ū1 < Ū2, are more persistent. A principal who tries to offer the pooling contract

proposed by Rothschild and Stiglitz (1976) will find himself with a long queue of type-1

agents, the worst possible outcome.

The exact environment studied by Rothschild and Stiglitz (1976) is somewhat different

than this model. In their framework, risk-neutral principals offer insurance contracts to risk-

averse agents with heterogeneous probabilities of loss. Our general setting is rich enough

to encompass that model and one can verify that a separating equilibrium always exists,

but may be Pareto inefficient. The reasons are exactly the same as in the simple model we

outline here.

We borrowed this example from Inderst (2005). He studies a dynamic model with random

meetings between principals and agents. There is an exogenous inflow of new principals and

agents into the marketplace, and when principals and agents agree on a contract, they exit

the market. He finds that in steady state, there will always be sufficiently many type-1

(undesirable) agents that principals will offer screening contracts. That is, the endogenous

composition of the pool of agents circumvents the Rothschild and Stiglitz (1976) nonexistence

result. We treat the composition of the entire pool of agents as exogenous; however, through

her contract, the composition of the pool of agents attracted to a particular principal is

endogenous. A principal that tries to offer a pooling contract finds the composition of the

market turning against her.
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5.3 Distortions in Market Tightness

A peculiar feature of the previous example is that market tightness is not distorted by the

need to screen. That is, θs is always at the constrained efficient level, maximizing µ(θ)bs−θk.

In the next example, we study how principals can use market tightness to screen out the

undesired type. To stress this point, we assume µ(θ) = min{θ, 1}. Thus each principal can

match with only one agent and vice versa, but there are no other coordination or search

frictions.

We imagine that each agent is endowed with one indivisible apple, but type-1 agents

have a bad apple while type-2 agents have a good apple. Each principal is endowed with

one indivisible banana. A trading mechanism for type-s agents is a pair {αs, βs}, where αs

is the probability that the agent gives the principal her apple and βs is the probability that

the principal gives the agent her banana. The expected utility of a type-s′ agent seeking the

contract for a type-s agent is

µ(θs)
(

βsb − αsa
A
s′

)

,

where b > 0 is the utility she derives from consuming a banana and aA
s > 0 is the value that

a type-s agent places on consuming her apple. The expected utility of a principal offering a

type-s contract is
µ(θs)

θs

(

αsa
P
s − βsb

)

− k.

Here aP
s > 0 is the value that a principal places on consuming a type-s apple, while we

normalize her value of a banana to the same b. Assume S = 2 and without loss of generality

that aP
2 > aP

1 . Also assume aP
s > aA

s + k for s = 1, 2, so there are gains from trade for both

types of apples, and aP
s < b + k, so principals are unwilling to post a contract that gives up

their entire banana in return for an apple.

We look for a solution to problem (P3), which we state here as

Ūs = max
α∈[0,1],β∈[0,1],θ

µ(θ)
(

βb − αaA
s

)

subject to
µ(θ)

θ

(

αaP
s − βb

)

= k

and Ūs′ ≥ µ(θ)
(

βb − αaA
s′

)

for s′ 6= s.
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Eliminate β using the free-entry condition to write this as

Ūs = max
α∈[0,1],θ

µ(θ)α
(

aP
s − aA

s

)

− θk

subject to αaP
s −

θk

µ(θ)
∈ [0, b]

and Ūs′ ≥ µ(θ)α
(

aP
s − aA

s′

)

− θk for s′ 6= s.

We again look for the best equilibrium. We start by solving the unconstrained problem

for type-s agents:

Ū∗
s = max

α∈[0,1],θ
µ(θ)α

(

aP
s − aA

s

)

− θk

subject to αaP
s −

θk

µ(θ)
∈ [0, b].

Since µ(θ) = min{θ, 1}, the solution is to set α = θ = 1, delivering Ū∗
s = aP

s − aA
s − k > 0.

Next we apply the operator T , where

Ts(Ū) = max
α∈[0,1],θ

µ(θ)α
(

aP
s − aA

s

)

− θk

subject to αaP
s −

θk

µ(θ)
∈ [0, b]

and Ūs′ ≥ µ(θ)α
(

aP
s − aA

s′

)

− θk for s′ 6= s.

Starting from Ū = Ū∗, we guess that the constraint for type-1 agents is slack while the one

for type-2 agents is binding. Thus

T1(Ū
∗) = Ū∗

1

and

T2(Ū) = max
α∈[0,1],θ

µ(θ)α
(

aP
2 − aA

2

)

− θk

subject to αaP
2 −

θk

µ(θ)
∈ [0, b]

and aP
1 − aA

1 − k = µ(θ)α
(

aP
2 − aA

1

)

− θk.

22



Eliminate α:

T2(Ū) = max
θ

aP
1 − aA

1 − (1 − θ)k

aP
2 − aA

1

(

aP
2 − aA

2

)

− θk

subject to
aP

1 − aA
1 − (1 − θ)k

µ(θ)(aP
2 − aA

1 )
aP

2 −
θk

µ(θ)
∈ [0, b]

and
aP

1 − aA
1 − (1 − θ)k

µ(θ)(aP
2 − aA

1 )
∈ [0, 1]

Temporarily ignore the constraints, which ensure that α and β are proper probabilities. Since

aP
2 > aA

1 by assumption, the objective function is increasing in θ if and only aA
1 > aA

2 . This

gives two cases, depending on whether this inequality holds.

If aA
1 < aA

2 , the objective function is decreasing in θ. Set θ equal to the smallest value

consistent with the two constraints. Here that is

θ2 =
aP

1 − aA
1 − k

aP
2 − aA

1 − k
< 1,

which implies α2 = 1, so the second constraint binds, and

Ū2 =
(aP

2 − aA
2 − k)(aP

1 − aA
1 − k)

aP
2 − aA

1 − k
.

It is straightforward to verify that the first constraint is satisfied. In addition, one can

verify that the principals’ zero profit condition binds and so the solution to problem (P3)

also solves (P2). Principals create too few contracts, so some type-2 agents fail to meet a

principal. Since type-2 agents hold a better apple than do type-1 agents, they are more

willing to accept this low meeting probability. In return, they get more bananas for their

apples when they succeed in meeting a principal. Note that the obvious alternative, setting

θs = 1 but rationing though the probability of exchange, αs < 1, is more costly because it

involves creating more contracts at cost k per contract.

Conversely, if aA
1 > aA

2 , the objective function is increasing in θ. Now set θ equal to the

largest value consistent with the two constraints,

θ2 = 1 +
aP

2 − aP
1

k
> 1,

which again implies α2 = 1. The value of the objective function is

Ū2 = aP
1 − aA

2 − k
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Again, it is straightforward to verify that the first constraint is satisfied. However, in this

case principals’ zero profit condition is slack and so Lemma 2 is inapplicable. The solution

to problem (P3) may not solve the primal problem (P2).

Indeed, this is the case. Suppose there were an equilibrium with Ū1 = aP
1 − aA

1 − k and

Ū2 = aP
1 − aA

2 − k. Write problem (P2) for the type-2 contracts:

k = max
α∈[0,1],β∈[0,1],θ

µ(θ)

θ
(αaP

2 − βb)

subject to Ū2 = µ(θ)(βb − αaA
2 )

and Ū1 ≥ µ(θ)(βb − αaA
1 ).

It is feasible to set θ = α = 1 and βb = aP
1 − k, since this implies both constraints bind. But

then the value of the objective function is aP
2 − aP

1 + k > k, a contradiction.

When aA
1 > aA

2 , there is no equilibrium because the screening technology is useless.

Principals would prefer to obtain type-2 apples, while type-2 agents are more willing to part

with their apple. Since the only means of screening is through probabilistic trade, type-1

agents are always willing to incur any screening costs that type-2 agents find palatable.

Pareto Improvement. It is again possible to attain a Pareto improvement. To show this,

we find a feasible allocation that Pareto dominates the equilibrium. We focus on allocations

that offer the same contract to different types, with α1 = α2 = θ1 = θ2 = 1. Then problem

(P4) reduces to

max
β∈[0,1]

(

βb − ω1a
A
1 − ω2a

A
2

)

s.t. π1a
P
1 + π2a

P
2 − βb − k = 0.

Using the constraint to eliminate βb, the expected utility of a type-s agent is

Ūs = π1a
P
1 + π2a

P
2 − aA

s − k.

Since Ū∗
s = aP

s − aA
s − k and aP

1 < aP
2 , it is immediate that type-1 agents are better off.

Type-2 agents are better off if

π1a
P
1 + π2a

P
2 − aA

2 − k >
(aP

2 − aA
2 − k)(aP

1 − aA
1 − k)

aP
2 − aA

1 − k
,

which holds for all πs whenever aA
1 ≤ aA

2 . Thus whenever an equilibrium exists, it would be

better for both types of agents to ensure that everyone trades at the unconditional fair price.
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