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Abstract

We develop a tractable model of the labor market where workers search for jobs
both on the job and off the job. Search is directed in the sense that each worker
chooses to search for the offer that provides the optimal tradeoff between the prob-
ability of obtaining the offer and the gain from the job. There are both aggregate
and match-specific shocks, and contracts are complete. We characterize the equi-
librium analytically, and show that the equilibrium is unique and socially efficient.
On the quantitative side, we calibrate the model to the US data to measure the
effects of aggregate productivity fluctuations on the labor market. We find that pro-
ductivity fluctuations account for 80% of the cyclical volatility in US unemployment.
Moreover, productivity fluctuations generate the same matrix of correlations between
unemployment and other labor market variables as in the US. In particular, the Bev-
eridge curve is negatively sloped over business cycles, and the magnitude of the slope
is the same as in the data. In light of these findings, we conclude that productivity
shocks are one of the main forces driving labor market fluctuations over business
cycles. Furthermore, we find that recessions have a cleansing effect on the economy.
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1. Introduction

1.1. Motivation

During the 1969 recession, the US unemployment rate increased from 3.5 to 6.1 percent.

In part, this increase was caused by a 20 percent drop in the rate at which unemployed

workers became employed (henceforth, the UE rate). In part, it was caused by a 30

percent increase in the rate at which employed workers became employed (henceforth, the

EU rate). Similarly, during the 1960, 1973 and 1990 recessions, the unemployment rate

increased because of fluctuations in both the UE and the EU transition rates.

During the 2001 recession, the vacancy rate declined by more than 40 percent. Most

likely as a consequence of this decline, the rate at which unemployed workers became

employed dropped by 20 percent. Moreover, the rate at which employed workers moved

from one employer to another (henceforth, the EE rate) dropped by approximately 15

percent. While we do not have data on employer-to-employer transitions prior to 1994,

related evidence1 suggests that, also during earlier recessions, the decline in the vacancy

rate caused a drop in the hiring rate among both the employed and the unemployed.

These observations suggest that, in order to understand the cyclical fluctuations of un-

employment and vacancies, an economist needs a unified theory of the workers’ transitions

between unemployment, employment, and across different employers.

1.2. Summary

In this paper, we build a search theoretic model of the labor market in which the workers’

transitions between employment, unemployment and across employers are endogenous. We

calibrate the model to match the key features about workers’ turnover in the postwar US.

And, finally, we use the calibrated model to measure the effect that aggregate productivity

shocks have on unemployment, vacancies and other labor market variables at the business

cycle frequency.

In particular, we consider a labor market populated by ex-ante homogeneous workers–

each endowed with one indivisible unit of labor–and ex-ante homogeneous firms–each

operating a technology that turns labor into final goods. In this market, trade is the

1Using data from the Panel Survey on Income Dynamics, Barlevy (2002) constructs a time series for the
rate at which employed workers quit their jobs. He finds that, during both the 1981 and 1990 recessions,
the quit rate significantly dropped.
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outcome of a search-and-matching process. During the first stage of this process, firms

choose how many vacancies to create and how much to offer to the workers who fill them.

And workers–both those who are still unemployed and those who are already employed–

choose how much to demand for filling one of these vacancies. During the second stage of

the process, some of the vacancies and workers who offer and seek the same terms of trade

successfully match. And when they do, trade and production begin. We assume that the

productivity of a match is the sum of an idiosyncratic and an aggregate component.

For this market, we prove the existence of an equilibrium with the property that the

agents’ value and policy functions as well as the vacancy/applicant function (i.e. the

ratio between the number of vacancies and the number of workers offering and seeking

the same terms of trade) depend on the current realization of the aggregate component

of productivity, but not on the other aggregate state variables (namely, the distribution

of employed workers across different matches and the unemployment rate). Moreover, we

prove that this equilibrium is unique and is efficient.

In this equilibrium, the vacancy/applicant ratio is lower the more favorable the terms

of trade for the worker. Firms are indifferent between creating different types of vacancies,

because the vacancies that offer more generous terms of trade attract more applicants and

are easier to fill. Workers, however, have strict preferences over different types of vacancies.

Unemployed workers seek vacancies that offer relatively less generous terms of trade but

are easier to find. Employed workers seek vacancies that are harder to find but pay more.

And workers who are employed at better jobs seek vacancies that offer more generous terms

of trade. When a positive shock to productivity hits the economy, the vacancy/applicant

ratio goes up. Unemployed workers seek vacancies that are both more generous and easier

to find. And employed workers seek vacancies that pay more and, depending on the quality

of their current job, may be easier or harder to find.

When a worker and a firm successfully match, they enter an employment relationship

which continues until the worker either moves to another employer or to unemployment.

The second event occurs if the idiosyncratic component of productivity is so low that the

firm’s and worker’s joint value of the match is lower than the worker’s value of unemploy-

ment. This event is more likely the lower is the aggregate component of productivity.

We calibrate our model to match the pattern of workers’ turnover in the US labor

market. In particular, we calibrate the parameters that describe the search-and-matching

process so that the model reproduces the average rates at which workers transit from em-
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ployment to unemployment, from unemployment to employment and from one employer

to the other. We calibrate the stochastic process of the idiosyncratic component of pro-

ductivity so that the model reproduces the cross-sectional distribution of workers across

tenure lengths. And we calibrate the stochastic process for the aggregate component of

productivity so that the average productivity of labor has the same statistical properties

in the model and in the data.

Using the calibrated model, we measure the effect of aggregate productivity shocks on

the labor market. We find that productivity shocks account for approximately 50 percent

of the cyclical fluctuations in the UE transition rate and for all of the cyclical fluctuations

in the EU transition rate. As a result, productivity shocks alone can explain more than

80 percent of the cyclical volatility of unemployment. We find that productivity shocks

generate large procyclical fluctuations in the number of vacancies opened for both employed

and unemployed workers. Overall, productivity shocks alone can account for 30 percent of

the cyclical volatility of vacancies, as well as for the strong negative correlation between

vacancies and unemployment. In light of these findings, we conclude that productivity

shocks may well be the fundamental source of business cycle fluctuations in the postwar

US.

1.3. Related Literature

First, our paper contributes to the literature that uses search theoretic models to measure

the role played by productivity shocks in driving the cyclical fluctuations of the labor mar-

ket. Shimer (2005) calibrates the canonical search model of Pissarides (1985) and finds

that aggregate productivity shocks account for less than 10 percent of the cyclical volatility

of unemployment and for less than 20 percent of the cyclical volatility of vacancies. Since

Pissarides (1985) is a constrained version of our model, we are able to provide a precise

explanation for the difference between Shimer’s findings and ours. First, we find that,

by constraining all matches to be homogeneous, Pissarides’ model introduces a downward

distortion in the measurement of the volatility of aggregate productivity shocks. Second,

by constraining all matches to be homogeneous, Pissarides’ model introduces a down-

ward distortion in the measurement of the volatility of the EU rate caused by aggregate

productivity shocks. Finally, by constraining all new hires to come from unemployment,

Pissarides’ model introduces a downward distortion in the measurement of the elasticity

of the matching function with respect to vacancies. All three of these distortions tend
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to reduce the measurement of the volatility of unemployment and vacancies caused by

productivity shocks.

The literature has identified some alternative generalizations/modifications of Pissarides

(1985) that have the effect of increasing the estimate of the volatility of unemployment and

vacancies caused by aggregate productivity shocks. Hall (2005) shows that, if wages were

sufficiently sticky, then all of the observed volatility of unemployment and vacancies would

be caused by aggregate productivity shocks. Mortensen and Nagypál (2007) show that,

if hiring and firing costs were added to Pissarides’ model, both unemployment and va-

cancies would become more responsive to aggregate productivity shocks. Nagypál (2008)

shows that, if hiring costs, asymmetric information, and search on the job were added

to Pissarides’ model, aggregate productivity shocks alone would account for most of the

volatility of vacancies and unemployment. While frictions in the wage setting process, hir-

ing costs and firing costs may well be important aspects of the US economy, they are also

very difficult to measure and, for this reason, we decided to keep them out of our model.

Next, our paper contains a theoretical contribution to the literature that uses on-the-job

search models to understand the workers’ transitions between the states of employment, un-

employment and across different jobs (Burdett 1978, Burdett and Mortensen 1998, Van den

Berg and Ridder 1999, Postel-Vinay and Robin 2002, Burdett and Coles 2003, Mortensen

2003). The scope of this literature has been limited by the fact that existing models of

search on the job are difficult to solve in an environment with aggregate shocks. This is

because, in these models, the distribution of employed workers across different jobs is a

state variable which non-trivially affects the agents’ value and policy functions, as well as

the vacancy/applicant ratio. In this paper, we develop a model of search on the job with

aggregate fluctuations that can be solved analytically because the workers’ distribution

does not affect the agents’ value and policy functions, or the vacancy/applicant ratio. As

discussed in Shi (2006) and Menzio and Shi (2008), it is the assumption of directed search

that makes our model tractable.

2. The Model

2.1. Physical Environment

The economy is populated by a continuum of workers with measure one and by a continuum

of firms with positive measure. Each worker has the von Neumann-Morgenstern utility
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function
∑

∞

t=0 β
tct, where ct ∈ R is the worker’s consumption in period t and β ∈ (0, 1) is

the discount rate. Each firm has the von Neumann-Morgenstern utility function
∑

∞

t=0 β
tπt,

where πt ∈ R is the firm’s profit in period t. In this economy, the labor market is organized

in a continuum of submarkets indexed by x ∈ R, where x denotes the value offered to a

worker in that submarket (explained further below). In submarket x, the ratio between the

number of jobs that are vacant and the number of workers who are searching is denoted

by θ(x) ∈ R+. We refer to θ(x) as the tightness of submarket x.2

Time is discrete and continues forever. At the beginning of each period, the state of the

economy can be summarized by the triple (y, u, g) ≡ ψ ∈ Ψ. The first element of ψ denotes

the aggregate component of labor productivity, y ∈ Y = {y1, y2, ...yNy}, where Ny ≥ 2.

The second element denotes the measure of workers who are unemployed, u ∈ [0, 1]. The

last element is a function g : Z → [0, 1], with g(z) denoting the measure of workers who are

employed at a job with idiosyncratic productivity z ∈ Z = {z1, z2, ...zNz}, where Nz ≥ 2.3

Clearly, u+
∑

i g(zi) = 1.

Each period is divided into four stages: separation, search, matching and production.

During the first stage, an employed worker becomes unemployed with probability τ ∈ [δ, 1],

where τ is determined by the worker’s labor contract. The lower bound on τ denotes the

probability of exogenous job destruction, δ ∈ (0, 1).

During the second stage, a worker gets the opportunity of searching for a job with a

probability that depends on his recent employment history. In particular, if the worker

was unemployed at the beginning of the period, he can search with probability λu ∈ [0, 1].

If the worker was employed at the beginning of the period and did not lose his job during

the separation stage, he can search with probability λe ∈ [0, 1]. If the worker lost his job

during the separation stage, he cannot search. Conditional on being able to search, the

worker chooses which submarket to visit. Also, during the second stage, a firm chooses how

many vacancies to create and where to locate them. The cost of maintaining a vacancy for

one period is k > 0. Both workers and firms take the tightness θ(x) parametrically.4

During the third stage, the workers and the vacancies in submarket x come together

2In submarkets that are not visited by any workers, θ(x) is an out-of-equilibrium conjecture that helps
determine equilibrium behavior.

3The reader should notice that the assumption that Y and Z are finite sets is not necessary for es-
tablsihing any of the theoretical results in this paper. We make this assumption only to simplify the
notation.

4That is, workers and firms treat the tightness θ(x) just like households and firms treat prices in a
Walrasian Equilibrium.
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through a frictional matching process. In particular, a worker finds a vacant job with

probability p(θ(x)), where p : R+ → [0, 1] is a twice continuously differentiable, strictly

increasing, strictly concave function which satisfies the boundary conditions p(0) = 0,

p(θ̄) = 1. Similarly, a vacancy finds a worker with probability q(θ(x)), where q : R+ → [0, 1]

is a twice continuously differentiable, strictly decreasing function such that q(θ) = θ−1p(θ),

q(0) = 1, and limθ→∞ q(θ) = 0. The properties of the functions p and q are meant to capture

the realistic feature that, the tighter is the submarket, the higher is the probability that a

worker finds a vacancy and the lower is the probability that a vacancy finds a worker.

When a worker meets a firm in submarket x, he is offered an employment contract which

gives him the lifetime utility x if he accepts it. If the worker rejects the firm’s offer (an event

that does not occur along the equilibrium path), he returns to his previous employment

position. If the worker accepts the offer, he first leaves his previous employment position

to enter his new employment relationship with the firm. Then, the worker and the firm

draw the the idiosyncratic productivity z̃ ∈ Z of their match, where z̃ is a random variable

with a density function f : Z → [0, 1].

During the last stage, an unemployed worker consumes b units of output, which include

home production and unemployment benefits. A worker employed at a job z produces

y + z units of output and consumes w of them, where w is specified by the worker’s labor

contract. At the end of the last stage, nature draws next period’s aggregate productivity

ŷ from the probability distribution φ(ŷ|y), φ : Y × Y → [0, 1].

2.2. Contractual Environment

The literature has considered a variety of assumptions about the contractual environment

in models of search on the job. For example, Burdett and Coles (2003), Stevens (2004) and

Shi (2006) assume that a labor contract is a wage/tenure profile. Burdett and Mortensen

(1998), Delacroix and Shi (2006) and Shimer (2006) assume that a contract is a wage that

remains constant throughout the employment relationship. Barlevy (2002), Ramey (2007)

and Nagypál (2008) assume that a contract can only prescribe the current wage and is

renegotiated in every period. In this paper, we depart from the existing literature, and

assume that employment contracts are complete. That is, the contracts prescribe the wage,

the separation strategy, and the worker’s on-the-job search strategy as a function of the

entire history of the match. While the assumption of complete contracts is strong, it is a

useful a benchmark that should be studied before considering alternative assumptions.
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To specify the contracts, let the history of a match be a vector {z; yt} ∈ Z × Y t, where

z is the match-specific component of productivity and yt = {y1, y2, ...yt} is the sequence of

realizations of the aggregate component of productivity since the inception of the match.5

An employment contract a ∈ ANz is an allocation {wt, τt, nt}
∞

t=0. The first element of

a denotes the wage as a function of the worker’s tenure t and the history of the match

{z; yt}, where wt : Z × Y t → R. The second element denotes the separation probability as

a function of the tenure t and the history {z, yt+1}, where τt : Z × Y t+1 → [δ, 1]. The last

element denotes the submarket where the worker searches while on the job as a function

of the tenure t and the history {z, yt+1}, where nt : Z × Y t+1 → R.

In the remainder of the paper, we let a(z; yt) ∈ A denote the allocation prescribed by

the employment contract a after the history {z; yt} is realized. And we use the fact that

a(z; yt) is equal to {wt(z; y
t), τt(z; y

t, ŷ), nt(z; y
t, ŷ)} ∪ a(z; yt, ŷ).

3. Conditions and Definition of Equilibrium

In this paper, we are interested in recursive equilibria in which the agents’ values, optimal

decisions, and the market tightness depend on the aggregate state of the economy ψ =

(y, u, g) only through y and not through the multi-dimensional distribution of workers

across employment states. In such equilibria, we can write the tightness in submarket x as

θ(x; y), instead of θ(x;ψ), when the aggregate component of productivity is y. Moreover,

we can denote U(y) as the lifetime utility of an unemployed worker when the aggregate

component of productivity is y. Similarly, W (z; y|a) denotes the lifetime utility of a worker

who is employed at a job with idiosyncratic productivity z and whose contract prescribes

the allocation a. J(z; y|a) denotes the lifetime profits of the firm that employs him. The

lifetime utilities U , W, and J are measured at the beginning of the production stage.

3.1. Worker’s Value of Searching

Consider a worker who has received the opportunity to look for a job at the beginning

of the search stage. If the worker visits submarket x, he succeeds in finding a job with

5In general, a complete contract should specify w, τ , and n as functions of the match-specific component
of productivity z and the sequence of realizations of the aggregate state of the economy since the inception
of the match, ψt = {ψ1, ψ2, ...ψt}. However, in this paper, we are interested in equilibria in which the
tightness function θ(x) depends on the aggregate state of the economy ψ = (y, u, g) only through y and
not through the entire distribution of workers across employment states. In these equilibria, the history
{z; yt} provides enough contingencies for a contract to be efficient.
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probability p(θ(x; y)), and he fails with probability 1 − p(θ(x; y)). If he succeeds, he

enters the production stage in a new employment relationship which gives him the lifetime

utility x. If he fails, he enters the production stage in the same employment position

that he previously held, which gives him the lifetime utility υ. Therefore, conditional on

visiting submarket x, the worker’s lifetime utility at the beginning of the search stage is

υ + p(θ(x; y)) (x− υ). Conditional on choosing x optimally6, the worker’s lifetime utility

is υ +D(υ; y), where

D(υ; y) = maxx p(θ(x; y))(x− υ). (R1)

Denote m(υ; y) as the solution for x of the maximization problem in (R1).

3.2. Worker’s Value of Unemployment

Consider an unemployed worker at the beginning of the production stage. In the current

period, the worker produces and consumes b units of output. In the next period, the

worker enters the search stage without a job and has the opportunity to look for one with

probability λu. Therefore, the worker’s lifetime utility U(y) is equal to

U(y) = b+ βE[U(ŷ) + λuD(U(ŷ); ŷ)]. (R2)

Throughout this paper, E denotes the conditional expectation on ŷ, calculated with the

distribution φ(ŷ|y).

3.3. Joint Value of a Match

Consider a matched pair of a firm and a worker at the beginning of the production stage.

The history of their match is {z, yt}. Let a = {w, τ, n}∪ â denote the allocation prescribed

by their employment contract after the history {z; yt} has realized.

In the current period, the worker consumes w units of output. During the next sep-

aration stage, the worker loses his job with probability τ , and keeps it with probability

1− τ . In the first case, the worker enters the search stage unemployed and does not have

the opportunity to look for a new job. In the second case, the worker enters the search

stage employed and, with probability λe, he has the opportunity to look for an alternative

6This qualification is relevant. When the worker is unemployed, he chooses x to maximize his lifetime
utility. However, when the worker is employed, he chooses x according to the prescriptions of his labor
contract, rather than to maximize his lifetime utility.
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job in submarket n. Therefore, the worker’s lifetime utility W (z; y|a) is equal to

W (z; y|a) = w + βE{τ (ŷ)U(ŷ) + [1− τ (ŷ)]W (z; ŷ|â(ŷ))}+

+βE {[1− τ(ŷ)]λep(θ(n(ŷ); ŷ)) [n(ŷ)−W (z; ŷ|â(ŷ))]} .
(R3)

In the current period, the firm’s profit is y + z − w. During the next separation stage,

the firm loses the worker with probability τ . During the next matching stage, the firm

loses the worker with probability (1 − τ )λep(θ(n)). The probability that the firm keeps

the worker until the next production stage is (1− τ ) (1− λep(θ(n))). Therefore, the firm’s

lifetime profits J(z; y|a) are equal to

J(z; y|a) = y + z − w + βE {[1− τ(ŷ)] [1− λep(θ(n(ŷ); ŷ))] J(z; ŷ|â(ŷ))} . (R4)

Now, consider the hypothetical problem of choosing the allocation a in order to maxi-

mize the sum of the worker’s lifetime utility and the firm’s lifetime profits from the match.

As we prove in the appendix, the maximized joint value of the match V (z; y) is

V (z; y) = max
w,τ,n

y + z + βE{τ (ŷ)U(ŷ) + [1− τ (ŷ)]V (z; ŷ)}+

+βλeE{[1− τ (ŷ)] p(θ(n(ŷ); ŷ))[n(ŷ)− V (z; ŷ)]},

w ∈ R, τ : Y → [δ, 1] , n : Y → R.

(R5)

From equation (R5), we can immediately derive the properties of the allocation a∗(z; y) =

{w∗t , τ
∗

t , n
∗

t}
∞

t=0 that maximizes the joint value of the match. At the separation stage, a∗(z; y)

specifies that the worker and the firm should voluntarily break up if and only if the sum

of their values is greater when they are apart than when they are together. That is,

τ∗t−1(y
t) = 1 iff U(yt) is greater than V (z; yt) + λeD(V (z; yt), yt), and τ∗t (yt) = δ otherwise.

At the search stage, the allocation specifies that the worker should visit the submarket that

maximizes the product between the probability of finding a job and the worker’s and firm’s

joint value from finding a job, i.e. n∗t−1(y
t) = m(V (z; yt); yt). Finally, since the wage is

just a transfer from the firm to the worker and both parties are risk neutral, the allocation

may specify any {w∗t }
∞

t=0. Therefore, the allocation a∗(z; y) may attain any division of the

joint value of the match V (z; y) between the firm and the worker.

3.4. Firm’s Value of a Meeting

When a firm meets a worker in submarket x, it chooses an employment contract that

maximizes its expected profits subject to providing the worker with the lifetime utility x.
9



Formally, the firm solves the problem

maxa∈ANz
∑

i J(zi; y|a(zi))f(zi),

s.t.
∑

iW (zi; y|a(zi))f(zi) = x.
(R6)

What is the solution to (R6)? First, consider a generic contract a. Conditional on any

realization z of the idiosyncratic component of productivity, the firm’s profits J(z; y|a(z))

cannot be greater than the difference between the maximized joint value of the match,

V (z; y), and the worker’s lifetime utility,W (z; y|a(z)). Therefore, if the contract a provides

the worker with the expected lifetime utility x, the firm’s expected profits cannot be greater

than
∑

i V (zi; y)f(zi) − x. Next, consider the contract a∗ = {a∗(zi; y)}i. Conditional

on any realization z of the idiosyncratic component of productivity, the firm’s profits

J(z; y|a∗(z; y)) are equal to the difference between the maximized joint value of the match,

V (z; y), and the worker’s lifetime utility, W (z; y|a∗(z; y)). Therefore, for the appropriate

selection of wages, the contract a∗ provides the worker with the expected lifetime utility

x and the firm with the expected profits
∑

i V (zi; y)f(zi)− x. These observations lead to

the following proposition.

Proposition 3.1. (Optimal Contract) (i) The firm’s value from meeting a worker in sub-

market x is
∑

i V (zi; y)f(zi)−x. (ii) Any employment contract that solves the firm’s prob-

lem (R6) prescribes the allocation: (a) nt−1(z; y
t) = m(V (z; yt); yt), for all {z; y

t} ∈ Z×Y t,

t = 1, 2, ...; (b) τt−1(z; y
t) = d(z; yt), for all {z; y

t} ∈ Z × Y t, t = 1, 2, ..., where d(z; y) = 1

iff U(y) > V (z; y) + λeD(V (z; y); y) and d∗(z; y) = δ otherwise.

Proof. In Appendix B. �

In the remainder of the paper, we are going to describe the prescriptions of the optimal

employment contract with the policy functions {d(z; y),m(υ; y)}, rather than with the

sequence {τt, nt}
∞

t=0.

3.5. Market Tightness

During the search stage, a firm chooses how many vacancies to create and where to lo-

cate them. The firm’s benefit of creating a vacancy in submarket x is the product be-

tween the probability of meeting a worker, q(θ(x; y)), and the value of meeting a worker,
∑

i V (zi; y)f(zi)− x. The firm’s cost of creating a vacancy in submarket x is k. When the

benefit is strictly smaller than the cost, the firm’s optimal policy is to create no vacancies
10



in x. When the benefit is strictly greater than the cost, the firm’s optimal policy is to

create infinitely many vacancies in x. And when the benefit and the cost are equal, the

firm’s profits are independent from the number of vacancies it creates in submarket x.

In any submarket that is visited by a positive number of workers, the tightness θ(x; y)

is consistent with the firm’s optimal creation strategy if and only if

q(θ(x; y)) [
∑

i V (zi; y)f(zi)− x] ≤ k, (R7)

and θ(x; y) ≥ 0, with complementary slackness. In any submarket that workers do not

visit, the tightness θ(x; y) is consistent with the firm’s optimal creation strategy if and

only if q(θ(x; y)) · [
∑

i V (zi; y)f(zi)− x] is smaller or equal than k. Following most of the

literature on directed search (e.g. Acemoglu and Shimer 1999, Shi 2006, Menzio 2007), we

restrict attention to equilibria in which the tightness θ(x; y) satisfies condition (R7) in all

submarkets.7

3.6. Laws of Motion

From the optimal policy functions, we can compute the probability that a worker transits

from one employment state to the other. First, consider a worker who is unemployed at

the beginning of the period. Let θu(y) denote θ(m(U(y); y); y). Then, at the end of the

period, the worker is still unemployed with probability 1− λup(θu(y)), and he is employed

at job of type ẑ with probability λup(θu(y))f(ẑ). Next, consider a worker who is employed

at a job of type z at the beginning of the period. Let θz(z; y) denote θ(m(V (z; y); y); y).

Then, at the end of the period, the worker is unemployed with probability d(z; y). He is

employed at a job of type ẑ �= z with probability [1 − d(z; y)] λep(θz(z; y))f(ẑ), and at a

job of type z with probability [1− d(z; y)] {1− λep(θz(z; y))[1− f(z)]}.

From these transition probabilities, we can compute the laws of motion for the measure

of unemployed workers and for the measure of workers employed at each idiosyncratic

productivity z. In particular, the measure of workers who are unemployed at the end of

the period is:

û = u(1− λup(θu(y))) +
∑

i d(zi; y)g(zi). (R8)

7This restriction is made without loss in generality. To see why, consider an equilibrium in which
submarket x0 is not visited by any workers and its tightness θ(x0) is such that θ(x0) > 0 and
q(θ(x0))[

∑
i
V (zi; y)f(zi) − x0] < k. Then, modify the equilibrium by replacing θ(x0) with θ̃(x0), where

θ̃(x0) is the tightness of submarket x0 that satisfies condition (R7). In this modified equilibrium, the
workers’ search strategy is unchanged because θ̃(x0) is smaller than θ(x0). In this modified equilibrium,
the firms’ creation startegy is unchanged because q(θ̃(x0)) [

∑
i
V (zi; y)f(zi)− x0] is smaller than k.
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Similarly, the measure of workers who, at the end of the period, are employed at a job with

idiosyncratic productivity z is:

ĝ(z) = h(ψ)f(z) + (1− d(z; y))(1− λep(θz(z; y)))g(z). (R9)

The function h(ψ) denotes the measure of workers who are hired during the matching stage

and is given as follows:

h(ψ) = uλup(θu(y)) +
∑

i(1− d(zi; y))λep(θz(zi; y))g(zi).

3.7. Tractable Recursive Equilibrium

The previous paragraphs motivate the following definition of equilibrium.

Definition 1: A Tractable Recursive Equilibrium (TRE) consists of a market tightness

function θ∗ : R × Y → R+; a search value function D∗ : R× Y → R, and policy function

m∗ : R × Y → R; an unemployment value function U∗ : Y → R; a match value function

V ∗ : Z × Y → R; a separation function d∗ : Z × Y → R; and the laws of motion

û∗ : Ψ → [0, 1], and ĝ∗ : Z × Ψ → [0, 1] for unemployment and employment. These

functions satisfy the following requirements:

(i) For all x ∈ R and all ψ ∈ Ψ, θ∗ satisfies the functional equation (R7);

(ii) For all V ∈ R and all ψ ∈ Ψ, D∗ satisfies the functional equation (R1), and m∗ is the

associated optimal policy function;

(iii) For all ψ ∈ Ψ, U∗ satisfies the functional equation (R2);

(iv) For all z ∈ Z and all ψ ∈ Ψ, V ∗ satisfies the functional equation (R6), and d∗ is the

associated optimal policy function;

(v) For all ψ ∈ Ψ, û∗ and ĝ∗ satisfy the equations (R8) and (R9).

4. Existence and Efficiency of an Equilibrium

In this section, we prove existence, uniqueness and efficiency of a Tractable Recursive Equi-

librium. To this aim, we first formulate the problem of the social planner and characterize
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its solution. Next, we prove that, if a Tractable Recursive Equilibrium exists, then it gen-

erates the same allocation that solves the planner’s problem. Moreover, we prove that a

TRE can always be built from the solution to the planner’s problem. We conclude the

section by providing a qualitative characterization of the equilibrium in and out of steady

state.

4.1. Social Planner’s Problem

At the beginning of the period, the social planner observes the state of the economy

ψ = {y, u, g}. At the separation stage, he chooses the destruction probability d(z) for

matches with idiosyncratic productivity z, d : Z → [δ, 1]. At the search stage, he chooses

the tightness θu for the submarket where he sends unemployed workers to look for jobs,

θu ∈ R+, and the tightness θz(z) for the submarket where he sends workers employed on

jobs of type z to look for better jobs, θz : Z → R+. The choices of d, θu and θz determine

the distribution of workers across employment states at the production stage and, hence,

at the beginning of next period. The social planner’s objective is to maximize the sum of

current and future aggregate consumption discounted at the rate β. Denote the planner’s

value function as s0(ψ). The planner’s problem is

s0(ψ) = maxd,θu,θz F (d, θu, θz|ψ) + βEs0(ψ̂)

s.t. û = u [1− λup(θu)] +
∑

i d(zi)g(zi),

ĝ(z) = h(ψ)f(z) + [1− d(z)] [1− λep(θz(z))] g(z),

h(ψ) = λup(θu)u+ λe
∑

i [1− d(zi)] p(θz(zi))g(zi),

(P1)

where F is the current period’s aggregate consumption given by

F (d, θu, θz|ψ) = ûb+
∑

i(y + zi)ĝ(zi)− k[λuuθu + λe
∑

i(1− d(zi))g(zi)θz(zi)].

The planner’s value function s0(ψ) is linear in both the measure u of workers who are

unemployed and the measure g(z) of workers who are employed at jobs with idiosyncratic

productivity z. That is,

s0(ψ) = s0u(y)u+
∑

i s
0
z(zi; y)g(zi). (P2)

The coefficient s0u(y) can be interpreted as the difference between the present value of

output produced by a worker who is currently unemployed and the present value of output

invested in creating vacancies for him. Similarly, the coefficient s0z(z; y) can be interpreted
13



as the present value of net output produced by a worker who is currently employed at a

job of type z. In line with basic economic intuition, the coefficient s0z(z; y) is increasing

in z. These properties of the planner’s value function are established in the following

proposition.

Proposition 4.1. (Social Planner’s Problem) (i) The value of the plan s0 : Ψ → R is the

unique solution to the functional equation (P1). (ii) There exist functions s0u : Y → R

and s0z : Z × Y → R such that the value of the plan s0(y, u, g) is equal to s0u(y)u +
∑

i s
0
z(zi; y)g(zi). (iii) The function s

0
z(zi; y) is non-decreasing in z.

Proof. In Appendix C. �

The planner’s assignment of vacancies to the submarket with unemployed workers is

optimal only if

k ≥ p′(θu){y − b+ βE[
∑

i s
0
z(zi; ŷ)f(zi)− s

0
u(ŷ)]} (P3)

and θu ≥ 0, with complementary slackness. This condition is easy to understand. The

left hand side of (P3) is the cost of assigning an extra vacancy to the submarket with

unemployed workers. The right hand side of (P3) is the expected benefit from such an

extra vacancy, given by the product of two terms. The first term, p′(θu), is the number

of unemployed workers who find a job because of the extra vacancy. The second term is

the difference between the present value of net output produced by an employed and an

unemployed worker, measured at the production stage. Notice that, since the left hand

side is independent from θu and the right hand side is strictly decreasing, the optimality

condition (P3) admits a unique solution in each aggregate state ψ. Moreover, since (P3)

depends on the aggregate state of the economy only through y, the optimal policy is a

function θ0u : Y → R+.

The planner’s assignment of vacancies to the submarket with workers who are employed

at jobs of type z is optimal only if

k ≥ p′(θz(z)){−z + βE[
∑

i s
0
z(zi; ŷ)f(zi)− s

0
z(z; ŷ)]} (P4)

and θz(z), with complementary slackness. The interpretation of the optimality condition

(P4) is similar to that of (P3), except that the extra vacancy is assigned to a submarket

populated by workers who are employed at jobs with idiosyncratic productivity z rather

than unemployed. As it is the case for (P3), the optimality condition (P4) admits a unique
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solution for θz(z) in each aggregate state ψ. Moreover, since (P4) depends on the aggregate

state of the economy ψ only through y, the optimal policy is a function θ0z : Z × Y → R+.

The planner’s choice of the destruction probability for matches with idiosyncratic pro-

ductivity z is optimal if and only if d(z) = 1 whenever

b+ βEs0u(ŷ) > −λekθ
0
z(z; y) + [1− λep(θ

0
z(z; y))] [y + z + βEs0z(z; ŷ)] +

+λep(θ
0
z(z; y)) {y + βE [

∑
i s
0
z(zi; ŷ)f(zi)]} ,

(P5)

and d(z) = δ otherwise. The interpretation of this condition is straightforward. The left

hand side of (P5) is the present value of net output produced by a worker who is unemployed

at the beginning of the production stage. The right hand side of (P5) is the present value of

net output produced by a worker who is employed at a job with idiosyncratic productivity z

at the beginning of the search stage. Clearly, the optimality condition (P5) admits only one

solution for d(z) in each aggregate state ψ. Moreover, since (P5) depends on the aggregate

state of the economy ψ only y, the optimal policy is a function d0 : Z × Y → [δ, 1].

Finally, the derivative of the social planner’s value function with respect to the measure

of unemployed workers is:

s0u(y) = −kλuθ
0
u(y) + [1− λup(θ

0
u(y))] [b+ βEs0u(ŷ)] +

+λup(θ
0
u(y)) {y + βE [

∑
i s
0
z(zi; y+)f(zi)]} .

(P6)

Similarly, the derivative of the social planner’s value function with respect to the measure

of workers employed at jobs of type z is:

s0z(z; y) = d0(z; y) [b+ βEs0u(ŷ)]− [1− d0(z; y)] kλeθ
0
z(z; y)+

+ [1− d0(z; y)] [1− λep(θ
0
z(z; y))] [y + z + βEs0z(z; ŷ)] +

+ [1− d0(z; y)]λep(θ
0
z(z; y)) {y + βE [

∑
i s
0
z(zi; ŷ)f(zi)]} .

(P7)

4.2. Equilibrium Allocation

Denote with {D∗,m∗, U∗, V ∗, d∗, θ∗} a Tractable Recursive Equilibrium. The market tight-

ness function θ∗(x; y) is derived from the equilibrium condition (R7). In particular, let x̃(y)

denote the difference between the firm’s and worker’s joint value of a match and the cost

of a vacancy, i.e. x̃(y) ≡
∑

i V
∗(zi; y)f(zi)− k. In all of the submarkets where workers are

offered less than x̃(y), the equilibrium tightness is strictly positive and such that the firm’s

benefit from opening a vacancy is equal to the cost. As the lifetime utility offered to the
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workers approaches x̃(y), the equilibrium tightness converges towards zero. In all of the

submarkets where workers are offered more than x̃(y), θ∗(x; y) is equal to zero. Formally,

the equilibrium market tightness is:

θ∗(x; y) =

{
q−1 (k/(

∑
i V

∗(zi; y)f(zi)− x)) if x ≤ x̃(y),
0 if x > x̃(y).

(E1)

The search policy function m∗(υ; y) satisfies the equilibrium condition (R1). That is,

m∗(υ; y) maximizes the product between the worker’s probability of finding a job, i.e.

p(θ∗(x; y)), and the worker’s value of taking the job and leaving his previous employment

position, i.e. x − υ. Equation (E1) implies that the worker’s probability of finding a job

is zero in all submarkets x > x̃(y). Equation (E1) also implies that, in all submarkets

x ≤ x̃(y), the worker’s value of a job is equal to the difference between the worker’s

and firm’s joint value of a match and the firm’s expected cost of creating a match, i.e.

x =
∑

i V
∗(zi; y)f(zi)− k/q(θ

∗(x; y)). Therefore, the search policy function is:

m∗(υ; y) ∈ arg max
x
{−kθ∗(x; y) + p(θ∗(x; y)) [

∑
i V

∗(zi; y)f(zi)− υ]}. (E2)

In equilibrium, whenever an unemployed worker has the opportunity to search, he visits

submarket m∗(U∗(y); y). Let θ∗u(y) denote the tightness of this submarket. In equilibrium,

whenever a worker employed at a job with idiosyncratic productivity z has the opportunity

to search, he visits submarket m∗(V ∗(z; y); y). Let θ∗z(z; y) denote the tightness of this

submarket. From equation (E2), it follows that the tightness θ∗u(y) satisfies the condition

k ≥ p′(θ∗u(y)) [
∑

i V
∗(zi; y)f(zi)− U

∗(y)] (E3)

and θ∗u(y) ≥ 0, with complementary slackness. Similarly, from equation (E2), it follows

that the tightness θ∗(z; y) satisfies the condition

k ≥ p′(θ∗(x; y)) [
∑

i V
∗(zi; y)f(zi)− V

∗(z; y)] (E4)

and θ∗z(z; y) ≥ 0, with complementary slackness.

In equilibrium, the lifetime utility of an unemployed worker is U∗(y) at the beginning

of the production stage. Let s∗u(y) denote the lifetime utility of an unemployed worker at

the beginning of the separation stage, i.e. s∗u(y) = U∗(y) + λuD(U∗(y); y). In equilibrium,

the worker’s and firm’s joint value of a match is V ∗(z; y) at the beginning of the production

stage. Let s∗z(z; y) denote the worker’s and firm’s joint value of a match at the beginning
16



of the separation stage, i.e. s∗z(z; y) equals the sum between d∗(z; y) · U∗(z; y) and (1 −

d∗(z; y))[V ∗(z; y) + λeD
∗(V ∗(z; y); y)]. Then, the equilibrium condition (R2) implies that

s∗u(y) = −kλuθ
∗

u(y) + [1− λup(θ
∗

u(y))] [b+ βEs∗u(ŷ)] +

+λup(θ
∗

u(y)) {y + βE [
∑

i s
∗

z(zi; ŷ)f(zi)]} .
(E5)

And the equilibrium condition (R5) implies that

s∗z(z; y) = d∗(z; y) [b+ βEs∗u(ŷ)]− [1− d∗(z; y)] kλeθ
∗

z(z; y)+

+ [1− d∗(z; y)] [1− λep(θ
∗

z(z; y))] [y + z + βEs∗z(z; ŷ)] +

+ [1− d∗(z; y))λep(θ
∗

z(z; y))] {y + βE [
∑

i s
∗

z(zi; ŷ)f(zi)]} .

(E6)

where d∗(z; y) is equal to 1 if

b+ βEs∗u(ŷ) > −λekθ
∗

z(z; y) + [1− λep(θ
∗

z(z; y))] [y + z + βEs∗z(z; ŷ)] +

+λep(θ
∗

z(z; y)) {y + βE [
∑

i s
∗

z(zi; ŷ)f(zi)]} ,
(E7)

and d∗(z; y) = δ, otherwise.

At this point, the reader may have recognized that the equilibrium objects {d∗, θ∗u, θ
∗

z , s
∗

u, s
∗

z}

satisfy the same system of equations that is satisfied by the solution to the social planner’s

problem {d0, θ0u, θ
0
z , s

0
u, s

0
z}. This system of equations admits only one solution. Therefore,

any Tractable Recursive Equilibrium is efficient. Moreover, the equations (E3)—(E7) are not

only necessary for a Tractable Recursive Equilibrium, but they are also sufficient. There-

fore, an equilibrium can always be constructed from the solution to the social planner’s

problem. We summarize these findings as the paper’s main theoretical result.

Theorem 4.2. (Existence, Uniqueness and Efficiency) (i) A Tractable Recursive Equilib-

rium exists. (ii) Let {D∗,m∗, U∗, V ∗, d∗, θ∗} be a Tractable Recursive Equilibrium. Let

θ∗u(y) denote θ
∗(m∗(U∗(y); y); y), and let θ∗z(z; y) denote θ

∗(m∗(V ∗(z; y); y); y). Then, the

equilibrium allocation {θ∗u, θ
∗

z , d
∗} is equal to the social planner’s allocation {θ0u, θ

0
z , d

0}.

Proof: In the Appendix D. �

The efficiency of the equilibrium is an intuitive result. Complete contracts guarantee

that, whenever an employed worker has to make a choice, he takes into account the effect of

his decision on the profits of his current employer. Moreover, free entry of firms guarantees

that, whenever a worker has to choose where to search for a new job, he implicitly takes

into account the effect of his decision on the profits of his prospective employer.
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A surprising result is the existence of an equilibrium in which the agents’ value and

policy functions and the market tightness function do not depend on the distribution of

workers across employment states. Given the equivalence between the equilibrium alloca-

tion and the plan, we can provide some intuition for this result by looking at the social

planner’s problem.

For example, consider the planner’s choice of θu. The cost of assigning θu vacancies

to the submarket visited by unemployed workers is kθu. This cost does not depend on

the distribution of workers across employment states because the technology for creating

vacancies is linear. The probability that an unemployed worker finds a match is p(θu).

This probability does not depend on the number of workers who are unemployed because

the matching process between vacancies and applicants features constant returns to scale.

In addition, this probability does not depend on the number of workers who are in other

employment states, because the latter workers visit different submarkets. Finally, the

additional output produced by a worker who is employed rather than unemployed is inde-

pendent from the workers’ distribution because the production technology is linear in labor

(both at home and in the market). Since the planner’s objective function is independent

from the distribution of workers across employment states, so are the optimal policy func-

tion θ0u(y) and the value function s0u(y). The reader should notice that, for the previous

argument to hold, it is critical that different workers search in different submarkets. That

is, it is critical that search is directed.

4.3. Characterization of Equilibrium

Now, we are in the position to characterize the equilibrium of our model economy. Equation

(E3) implies that the tightness of the submarket visited by an unemployed worker is an

increasing function of the difference between the value of a new match, i.e.
∑
V ∗(zi; y)f(zi),

and the value of unemployment, i.e. U∗(y). Equation (E4) implies that the tightness of

the submarket visited by an employed worker is an increasing function of the difference

between the value of a new match and the value of his current match. Since the value

of a match is increasing in the idiosyncratic component of its productivity, θ∗z(z; y) is a

decreasing function of z.

Equation (E7) characterizes the workers’ transitions from employment to unemploy-

ment. In particular, an employed worker becomes unemployed with probability 1 if the

value of his match at the beginning of the separation stage is smaller than the value of
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unemployment. Otherwise, he becomes unemployed with probability δ. Since the value of

a match is strictly increasing in the idiosyncratic component of productivity, there exists

a zeu(y) such that d∗(z; y) = 1 for all z < zeu(y) and d∗(z; y) = δ for all.z ≥ zeu(y).

Even though we are not able to characterize analytically the relationship between

{d∗, θ∗u, θ
∗

z} and y, we can easily compute it. For the parameter values in Table 2, the

difference between the value of a match and the value of unemployment is increasing in

the aggregate component of productivity. On the one hand, this implies that the tightness

of the submarket visited by unemployed workers is an increasing function of y. On the

other hand, this implies that the probability that a worker employed at a job of type z is

a decreasing function of y.

For the parameter values in Table 2, the difference between the value of a new match

and the value of a match with a relatively low idiosyncratic productivity is increasing in y.

The difference between the value of a new match and a relatively high productivity match

is decreasing in y. Therefore, the effect that a positive shock to aggregate productivity has

on the tightness of the submarket visited by an employed worker depends on the quality

of his job.

Given the functions {d∗, θ∗u, θ
∗

z} and an initial state ψ ∈ Ψ, we can study the effect that

a 1% increase in the aggregate component of productivity has on unemployment, vacancies,

transition rates and other labor market outcomes. In Figure 3, we report the results of

this study given that the parameter values are set as in Table 2 and the initial state of the

economy is the non-stochastic steady state.

When the economy is hit by the shock, the rate at which unemployed workers become

employed increases because they search tighter submarkets. And the rate at which em-

ployed workers become unemployed falls because d∗(z; y) is a decreasing function of y. As

a result, the unemployment rate declines.

When the economy is first hit by the shock, aggregate vacancies increase because both

unemployed and (on average) employed workers search tighter submarkets, while the dis-

tribution of workers is the same as in steady state. Over time, the aggregate number of

vacancies regresses towards its steady state value because workers progressively move from

employment states in which they search tighter submarkets to states in which they search

slacker ones (namely, from unemployment to employment, and from low productivity jobs

to higher productivity ones).

Finally, notice that, when the economy is hit by the shock, the average idiosyncratic
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productivity of a job is subject to two opposing forces. On the one hand, the average

idiosyncratic productivity tends to increase because workers who are employed at jobs with

relatively low z search in tighter submarkets. On the other hand, the average idiosyncratic

productivity tends to decrease because zeu(y) is lower. The second force dominates the

first one. As a result, the average productivity of labor increases only by 0.6 percent in

response to the shocks.

5. Calibration

We begin this section by describing the dataset that we are going to use to calibrate our

model. This dataset includes all the information used by Shimer (2005) to calibrate the

textbook search model of Pissarides (1985). However, since our model has more parameters

than Pissarides’, the dataset contains additional information about the job-to-job transition

rate and the tenure distribution. In the second part of the section, we describe and motivate

the calibration strategy. In particular, we explain why we can recover the distribution of

idiosyncratic productivities from the tenure distribution. In the last part of the section, we

report the results of the calibration.

5.1. Data

We measure quarterly productivity as the CPS output per worker in the non-farm business

sector. And we measure unemployment as a 3-month average of the CPS monthly rate of

unemployment in the civilian population. We construct the cyclical component of these

two variables as the difference between the log of the raw data and an HP trend (with

smoothing parameter 1600). Over the period between 1951(I) and 2006(II), the average of

our measure of productivity is 82 (100 being productivity in 1992) and the average of our

measure of unemployment is 5.6 percent. Over the same period, the cyclical components of

productivity and unemployment move together. However, cyclical unemployment is more

than 10 times as volatile as productivity. These and other statistics are reported in Table

1.

We measure the rate at which employed workers become unemployed (the EU rate)

as well as the rate at which unemployed workers become employed (the UE rate) using

the methodology developed by Shimer (2005). Specifically, we measure the EU rate in
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month t as heut = ust+1/(1− ut), where ust+1 is the CPS short-term unemployment rate8 in

month t + 1, and ut is the CPS unemployment rate. We measure the UE rate in month

t as huet = 1 − (ut+1 − u
s
t+1)/ut. Then, we construct the quarterly transition rates by

taking 3-month averages of heut and huet . Over the period between 1951(I) and 2006(II),

the average EU rate is 2.6 percent, and the average UE rate is 45 percent. Over this period,

the cyclical component of the EU rate is positively correlated with cyclical unemployment

and it is approximately 60 percent as volatile. The cyclical component of the UE rate is

negatively correlated with unemployment and it is approximately 65 percent as volatile.

The rate at which workers move from employer to employer is measured by Nagypál

(2008) from the CPS microdata. Specifically, she measures the EE rate in month t as

heet = f eet /et, where f eet is the number of workers who are employed at different firms in

months t and t + 1, and et is the number of workers who are employed in month t. Over

the period between 1994(I) and 2006(II), the average EE rate is 2.9 percent. Over the

same period, the cyclical component of the EE rate is negatively correlated with cyclical

unemployment and it is approximately 30 percent as volatile. Prior to 1994, Nagypál’s

measure of the EE rate cannot be constructed because the CPS did not collect data on

job-to-job transitions.

We measure vacancies with the Conference Board Help-Wanted Index. Over the period

1951(I)-2006(II), the contemporaneous correlation between cyclical vacancies and cyclical

unemployment is -.92. Over the same period, the standard deviation of cyclical vacancies

is 10 percent higher than the standard deviation of cyclical unemployment.

Finally, in order to calibrate the probability distribution of the match-specific compo-

nent of productivity, we use information about the duration of employment relationships

in the US labor market. In particular, we use the measure of the distribution of workers

across tenure lengths that Diebold, Neumark and Polsky (1997) have constructed from the

1987 CPS tenure supplement. This tenure distribution is plotted in Figure 1.

8The CPS defines the short-term unemployment rate as the ratio between the number of civilians who
have been unemployed for 0 to 4 weeks and the civilian labor force. However, with the 1994 redesign of
the CPS, there has been a change in the measurement of the duration of unemployment. As discussed
in Elsby, Michaels and Solon (2007), the change in the measurement can be corrected by multiplying the
official short-term unemployment by 1.15 in each month from February 1994 on.
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5.2. Calibration Strategy

With the data described in the previous paragraphs, we need to calibrate the household’s

preferences {b, β}, the search technology {λu, λe, p, δ}, and the production technology

{k, Z, f, Y, φ}. For the sake of simplicity, we restrict attention to job finding probabil-

ity functions of the form p(θ) = min{1, θγ}, γ ∈ (0, 1). We also restrict the distribution of

the idiosyncratic component of productivity to be a 1,000 point approximation of a Weibull

distribution with mean µz scale σz, and shape αz.
9 And we restrict the stochastic process

for the aggregate component of productivity to be a 3-state Markov process with uncondi-

tional mean µy standard deviation σy, and autocorrelation ρy. Without loss of generality,

we can normalize µy to 1 and µz to 0.

We choose one month as the length of a model period. We set β so that the annual

interest rate in the model is 5 percent. We set the vacancy cost k, the home productivity

b, and the search probability λe so that steady-state UE, EU and EE rates in the model

are equal to the corresponding average values in the data (see Table 1). We set the search

probability λu to 1 because it is difficult to identify it separately from k and λe.

Our strategy for calibrating the remaining parameters is less standard and deserves some

discussion. In the model, the parameter γ determines the elasticity of the UE rate with

respect to the tightness of the submarket visited by unemployed workers, θu. Moreover,

since a disproportionate number of vacancies are created in this submarket, the parameter γ

is positively correlated with the elasticity of the UE rate with respect to the ratio between

total vacancies and unemployment. Therefore, even without data on θu, we are able to

identify γ from the coefficient of log(v/u) in the regression of log hue.

In the model, the parameters αz and δ affect the shape of the hazard/tenure profile, i.e.

the probability that a worker leaves his job as a function of tenure. A higher αz reduces the

skewness of the probability distribution of the match-specific component of productivity.

In turn, this tends to reduce the hazard rate at short tenures (0 to 2 years) and to increase

it at medium tenures (2 to 4 years). In contrast, a higher δ increases the hazard rate at

all tenures, including long ones (more than 4 years). Therefore, we are able to identify

9The Weibull density function is:

f (z) =
αz

σz

(
z − µz
σz

)αz−1
exp

[
−

(
z − µz
σz

)αz]
.
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both αz and δ by minimizing the distance between the tenure distribution generated by

the model and its empirical counterpart.

After re-calibrating the other parameters, an increase in the variance of the distribution

of the idiosyncratic component of productivity leads to a drop in the ratio between the

average productivity of labor at home and in the market, i.e. b/(µy+
∑

i zig(zi)). Therefore,

we choose σz so that the model generates the same ratio of productivities that Hall and

Milgrom (2008) estimate from US data (namely, 71 percent10). Finally, we choose σy

and ρy so that the average productivity of labor has the same standard deviation and

autocorrelation in the model and in the data.

5.3. Calibration Outcomes

Column a in Table 2 contains the results of our calibration. Most notably, we find that

employed workers have the opportunity of searching the labor market nearly as often as

unemployed workers (λe = 0.81, λu = 1). Yet, the rate at which employed workers move

from one employer to the other is 20 times smaller than the rate at which unemployed

workers become employed because the latter seek jobs that offer less generous terms of

trade and are easier to find.

We also find that there is a great deal of uncertainty about the productivity of a new

match. At the ninetieth percentile of the probability distribution f(z), the productivity

of a match is twice as large as at the tenth percentile. However, because the survival

probability of a match is endogenous, not all of this uncertainty translates into dispersion

in the cross-sectional productivity distribution g(z). At the ninetieth percentile of g(z), the

productivity of a match is only 1.3 times as large as at the tenth percentile. This process of

endogenous selection also creates a large wedge between the expected productivity of a new

match and the average of the cross-sectional productivity distribution. In particular, the

expected productivity of a new match, µy+
∑
zif(zi), is equal to 1, while the cross-sectional

average productivity of a match, µy +
∑
zig(zi), is 1.35.

10If we were to target a higher ratio between home and market productivity (as advocated by Hagedorn
and Manovskii, 2008), the model would generate an even larger response of vacancies and unemployment
to aggregate productivity shocks.
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6. Business Cycle Analysis

6.1. Aggregate Productivity Shocks

What is the effect of aggregate productivity shocks (henceforth, y-shocks) on the US labor

market? In order to answer this question, we compute the Tractable Recursive Equilibrium

of our calibrated model. Then, we draw a realization of the stochastic process for the

aggregate component of productivity y, and we compute the time series of unemployment,

vacancies and other labor market variables. Finally, we pass the log of these series through

an HP-filter with smoothing parameter 1600.

Table 3 contains a statistical summary of our simulated data. The first lesson that

we draw from this table is that y-shocks generate fluctuations in the EU transition rate

that are negatively correlated with the fluctuations in the average productivity of labor

and are approximately 8 times as large. In addition, y-shocks generate fluctuations in the

UE transition rate that are positively correlated with average productivity fluctuations

and are 3 times as large. As a result, unemployment moves in the opposite direction of

average productivity and it is 10 times more volatile. The second lesson that we draw from

Table 3 is that y-shocks generate vacancy fluctuations that are almost perfectly negatively

correlated with unemployment fluctuations and 30 percent larger.

By comparing Tables 1 and 3, we find that aggregate productivity shocks alone generate

more than 80 percent of the unemployment volatility that is observed in the US economy

over the period 1951(I) - 2006(II). Moreover, aggregate productivity shocks generate the

same correlation matrix between unemployment, vacancies and worker’s transition rates

that is observed in the postwar US. In light of these findings, we conclude that aggregate

productivity shocks may well be the fundamental source of business cycle fluctuations in

the US.

However, aggregate productivity shocks cannot be the only cause of the US business

cycles. First of all, y-shocks alone generate a counterfactually strong correlation between

average labor productivity and other labor market variables (e.g. unemployment, vacancies,

etc.). Second, y-shocks generate only 40 percent of the observed volatility of vacancies.

Finally, they generate too much unemployment volatility through fluctuations in the EU

rate and too little of it through fluctuations in the UE rate.
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6.2. Aggregate Productivity Shocks in the Canonical Search Model

The canonical search model, as formulated by Pissarides (1985, 2000) or Shimer (2005), is

a version of our model in which matches are homogeneous and workers search only off the

job. That is, the canonical search model is a version of our model in which the parameters

λe and σz are constrained to be equal to zero. These constraints are rejected by the data,

as shown in Section 5.3. Here, we want to find out whether (and why) these constraints

distort the measurement of the effect that aggregate productivity shocks have on the US

labor market.

To this aim, we first calibrate the constrained version of our model using the same

targets that we used in Section 5.2, with the obvious exclusion of the EE transition rate

and the tenure distribution. The results of this calibration are reported as column b in

Table 2. Then, with these calibrated parameters, we compute the Tractable Recursive

Equilibrium of the model. Finally, we draw a realization for the stochastic process of y and

compute the time series for unemployment, vacancies and other labor market variables.

The results of this simulation are reported in Table 4.

According to the constrained version of our model, y-shocks generate fluctuations in

the EU transition rate that are negatively correlated with the fluctuations in the average

productivity of labor and are 70 percent as large. Also, y-shocks do not generate any

fluctuations in the UE transition rate. As a result, unemployment moves in the opposite

direction of average productivity and it is about 60 percent as volatile. Comparing these

and other findings from Table 4 with those in Table 3, we conclude that imposing the

constraints λe = σz = 0 to our model (i.e. using the canonical search model) distorts

downward the measures of the volatility of unemployment, vacancies and transition rate

that is caused by aggregate productivity shocks.

It is easy to explain the difference between the measurements generated by the canonical

model and ours. First, in our model, when a positive shock to the aggregate component of

productivity hits the economy, the EU transition rate declines because workers and firms

find it optimal to keep some of the low quality matches that previously they would have

destroyed. In the canonical search model, a positive shock to aggregate productivity has

no effect on the EU transition rate because all matches are identical.

Second, in our model, when a +1% shock to the aggregate component of productivity

hits the economy, the average productivity of labor increases only by 0.6% because workers
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and firms become less selective about the quality of the matches that they want to keep.

In the canonical model, a 1% increase in the aggregate component of productivity trans-

lates into a 1% increase in average productivity because all matches are identical. Since

both models are calibrated to match the empirical volatility of average productivity, the

magnitude of y-shocks is 40 percent smaller in the canonical model than in ours. In turn,

smaller y-shocks generate smaller fluctuations in unemployment, vacancies and transition

rates.

Third, in both models, vacancies v are equal to uθu + (1 − u)λeθe, where θu is the

tightness of the submarket visited by unemployed workers and θe is the average tightness

of the submarkets visited by employed workers. In our model, when the economy is hit

by a positive shock to productivity, both θu and θe increase and contribute to increase

vacancies. In the canonical search model, when the economy is hit by a positive y-shock,

θe does not contribute to increase vacancies because employed workers are not allowed to

search.

Fourth, the effect of productivity shocks in the two models differs because the calibrated

elasticity of the job-finding probability is different. That is, the two models have different

values of the parameter γ in the job-finding probability function p(θ) = min{θγ, 1}. In both

models, the calibrated value of γ is such that the elasticity of the UE rate with respect

to the vacancy/unemployment ratio is the same in the model as in the data, namely 0.22.

Therefore, in both models, the calibrated value of γ is equal to 0.22 · [∆ log(v/u)/∆ log θu].

In our model, because the number of vacancies created for employed workers moves together

with θu, ∆ log(v/u) is greater than ∆ log θu. As a result, the calibrated value of γ is 0.65. In

the canonical model, because workers are not allowed to search on the job, v/u is equal to

θu and so γ is equal to 0.22. In turn, a smaller γ implies that the UE rate is less responsive

to a given shock to the aggregate component of productivity.

7. Conclusions

In the first part of this paper, we have built a directed search model of the labor market in

which the workers’ transitions between employment, unemployment and across employers

are endogenous. For this model, we have proved the existence, uniqueness and efficiency of

a recursive equilibrium with the property that the distribution of workers across different

jobs is a state variable which does not affect the agents’ value and policy functions, or
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the tightness function. Because of these properties, we have been able to analytically

characterize the equilibrium allocation in and out of steady state.

In the second paper of this paper, we have calibrated our model to match the features

of workers’ turnover in the US labor market over the period 1951(I)-2006(II). Then, we

have used the calibrated model to measure the effect of aggregate productivity shocks on

the volatility of unemployment and vacancies. We have found that aggregate productivity

shocks alone account for approximately 50 percent of the cyclical fluctuations in the UE

transition rate and for all of the cyclical fluctuations in the EU transition rate. As a result,

productivity shocks alone can explain more than 80 percent of the cyclical volatility of

unemployment. We have found that productivity shocks generate large procyclical fluctu-

ations in the vacancy/worker ratio of the submarket visited by unemployed workers and in

the average vacancy/worker ratio of the submarkets visited by employed workers. Overall,

productivity shocks alone can account for 30 percent of the cyclical volatility of vacancies,

as well as for the strong negative correlation between vacancies and unemployment.

A comparison of these findings with those derived using the textbook search model of

Pissarides (1985) vindicates our initial conjecture. In order to properly measure the effect

of productivity shocks on unemployment, an economist needs a model that endogenizes

not only the rate at which unemployed workers become employed, but also the rate at

which employed workers become unemployed. And in order to properly measure the effect

of productivity shocks on vacancies, an economist needs a model that takes into account

not only the hiring of unemployed workers, but also the hiring of employed workers.
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Appendix

A. Joint Value of a Match

The definition of V (z; y) is

V (z; y) = maxa∈A[W (z; y|a) + J(z; y|a)]. (A1)

First, notice that the allocation a = {w, τ, n}∪ â belongs to the set A if and only if w ∈ R,
τ : Y → [δ, 1], n : Y → R, and â : Y → A. Second, notice that the worker’s lifetime utility
W (z; y|a) is equal to the RHS of equation (R2) and the firm’s lifetime profits J(z; y|a) are
equal to the RHS of equation (R3). In light of these observations, we can rewrite (A1) as

V (z; y) = max
w,τ,n,â

y + z + βE {τ(ŷ)U(ŷ) + [1− τ(ŷ)]λep(θ(n(ŷ); ŷ))n(ŷ)}+

+βE {[1− τ (ŷ)][1− λep(θ(n(ŷ); ŷ))] [J(z; ŷ|â(ŷ)) +W (z; ŷ|â(ŷ))]} ,

w ∈ R, τ : Y → [δ, 1], n : Y → R, â : Y → A.

(A2)

Now, notice that both the probability that the match survives during the separation stage,
i.e. 1 − τ(ŷ), and the probability that the match survives during the search stage, i.e.
1− λep(θ(n(ŷ); ŷ)), are non negative numbers. In light of this observation, we can rewrite
(A2) as

V (z; y) = max
w,d,n

y + z + βE {τ(ŷ)U(ŷ) + [1− τ(ŷ)]λep(θ(n(ŷ); ŷ))n(ŷ)}+

+βE{[1− τ (ŷ)][1− λep(θ(n(ŷ); ŷ))] max
â∈A

[J(z; ŷ|â) +W (z; ŷ|â)]},

w ∈ R, τ : Y → [δ, 1], n : Y → R.

(A3)

Finally, notice that the maximum of the sum between the worker’s continuation utility
W (z; ŷ|â) and the firm’s continuation profits J(z; ŷ|â) is equal to V (z; ŷ). Therefore, (A3)
is equal to equation (R5) in the main text. �

B. Proof of Proposition 3.1

Let the contract a be a feasible choice for the firm’s problem (R6). First, notice that, for
any realization zi of the idiosyncratic component of productivity, the contract a prescribes
an allocation a(zi) which may not necessarily maximize the joint value of the match, i.e.
W (zi; y|a(zi))+J(zi; y|a(zi)) is smaller than or equal to V (zi; y). Second, notice that, since
a is feasible, it provides the worker with the lifetime utility x, i.e.

∑
iW (zi; y|a(zi))f(zi) =

x. In light of these observations, it follows that the contract a provides the firm with the
following profits:

∑
i J(zi; y|a(zi))f(zi) ≤

∑
i V (zi; y)f(zi)−

∑
iW (zi; y|a(zi))f(zi) =

=
∑

i V (zi; y)f(zi)− x.
(A4)
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Let a∗ denote the contract {w∗t , τ
∗

t , n
∗

t}
∞

t=0 that has the following properties: (a) τ∗t−1(z; y
t) =

1 iff U(yt) > V (z; yt) + λeD(V (z; yt); yt) and τ ∗t−1(z; y
t) = δ otherwise, for all {z; yt} ∈

Z × Y t, t = 1, 2, ...; (b) n∗t−1(z; y
t) = m(V (z; yt); yt), for all {z; yt} ∈ Z × Y t, t = 1, 2, ...;

(c) w∗t (z; y
t) is such that

∑
iW (zi; y|a

∗(zi))f(zi) = x. First, notice that, for any realization
zi of the idiosyncratic component of productivity, the contract a∗ prescribes an allocation
a∗(zi) which maximizes the joint value of the match. Second, notice that a∗ provides the
worker with the lifetime utility x. In light of these two observations, it follows that the
contract a∗ provides the firm with the following profits:

∑
i J(zi; y|a

∗(zi))f(zi) =
∑

i V (zi; y)f(zi)−
∑

iW (zi; y|a
∗(zi))f(zi) =

=
∑

i V (zi; y)f(zi)− x.
(A5)

The contract a∗ is a feasible choice for the firm’s problem (R6), and it provides the firm
with more profits than any other feasible choice. Hence, it is optimal.

Finally, the reader can easily verify that, if a contract {wt, τt, nt}
∞

t=0 solves the firm’s prob-
lem (R6), then it maximizes the joint value of the match. Hence, the contract {wt, τt, nt}

∞

t=0

prescribes that (a) τt−1(z; y
t) = 1 iff U(yt) > V (z; yt)+λeD(V (z; yt); yt) and τt−1(z; y

t) = δ
otherwise, for all {z; yt} ∈ Z × Y t, t = 1, 2, ...; (b) nt−1(z; y

t) = m(V (z; yt); yt), for all
{z; yt} ∈ Z × Y t, t = 1, 2, ... �

C. Proof of Proposition 4.1

(i) Let Ψ denote the set Y × [0, 1]N(z)+1. Let C(Ψ) denote the set of bounded continuous
functions r : Ψ → R, with the sup norm. Define the operator T on C(Ψ) by

(Tr)(ψ) = maxd,θu,θz F (d, θu, θd|ψ) + βE
[
r(ψ̂)

]

s.t. û = u [1− λup(θu)] +
∑

i d(zi)g(zi),

ĝ(z) = h(ψ)f(z) + [1− d(z)] [1− λep(θz(z))] g(z),

d : Z → [δ, 1], θu ∈ [0, θ̄], θz : Z →
[
0, θ̄
]
.

(A6)

For each r ∈ C(Ψ) and ψ ∈ Ψ, the problem in (A6) is to maximize a continuous function
over a compact set. Hence the maximum is attained and the argmax is non-empty. Since
both F and r are bounded, Tr is also bounded; and since F and r are continuous, it follows
from the Theorem of the Maximum (see Stokey, Lucas and Prescott 1989, page 62) that
Tr is also continuous. Hence, the operator T maps C(Ψ) into itself.

Since the operator T satisfies the remaining hypotheses of Blackwell’s sufficient conditions
for a contraction (see Stokey, Lucas and Prescott 1989, page 54), it follows that T has a
unique fixed point s̃ ∈ C(Ψ). And since limt→∞ β

ts̃(ψ) = 0 for all ψ ∈ Ψ, it follows that
the fixed point s̃ is equal to the value of the plan s0.

(ii) Let L(Ψ) denote the set of bounded continuous functions r : Ψ → R that are linear in
the measure u of unemployed workers as well as in the measure g(z) of workers employed
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at jobs with idiosyncratic productivity z, i.e.

r(ψ) = ru(y)u+
∑

i rz(zi; y)g(zi).

Given a function r in L(Ψ), consider the problem (A6). For each ψ ∈ Ψ, the necessary
condition for the optimality of θu is:

k ≥ p′(θu){y − b+ βE[
∑

i rz(zi; ŷ)f(zi)− ru(ŷ)]} (A7)

and θu ≥ 0, with complementary slackness. Since the function p′(θ) is strictly decreasing
in θ, there is at most one θu that satisfies condition (A7). Hence the optimum is unique.
Since (A7) depends on ψ only through y, the optimal policy is a function θ̃u : Y → [0, θ̄].

For each ψ ∈ Ψ, the necessary condition for the optimality of θz(z) is:

k ≥ p′(θz(z)){−z + βE[
∑

i rz(zi; ŷ)f(zi)− rz(z; ŷ)]} (A8)

and θz(z) ≥ 0, with complementary slackness. Since p′(θ) is strictly decreasing in θ, there
is at most one θz(z) that satisfies condition (A8). Hence the optimum is unique. Since
(A8) depends on ψ only through y, the optimal policy is a function θ̃z : Z × Y → [0, θ̄].

For each ψ ∈ Ψ, the necessary and sufficient condition for the optimality of d is d(z) = 1 if

b+ βE[ru(ŷ)] > −λekθz(z) + [1− λep(θz(z))] [y + z + βErz(z; ŷ)] +

+λep(θz(z)) {y + βE [
∑

i rz(zi; ŷ)f(zi)]} ,
(A9)

and d(z) = δ otherwise. Since (A9) does not depend on d, there is exactly one d that
satisfies condition (A8). Since (A9) depends on ψ only through y, the optimal policy is a
function d̃ : Z × Y → [δ, 1].

Define the function r̃u : Y → R by

r̃u(y) = −kλuθ̃u(y) +
[
1− λup(θ̃u(y))

]
[b+ βEru(ŷ)] +

+λup(θ̃u(y)) {y + βE [
∑

i rz(zi; ŷ)f(zi)]} .
(A10)

And define the function r̃z : Z × Y → R by

r̃z(z; y) = d̃(z; y) [b+ βEru(ŷ)]− [1− d̃(z; y)]kλeθ̃z(z; y)+

+[1− d̃(z; y)]
[
1− λep(θ̃z(z; y))

]
[y + z + βErz(z; ŷ)] +

+[1− d̃(z; y)]λep(θ̃z(z; y)) {y + βE [
∑

i rz(zi; ŷ)f(zi)]} .

(A11)

It is then immediate that

(Tr)(ψ) = r̃u(y)u+
∑

i r̃z(zi; y)g(zi).

Hence, the operator T maps L(Ψ) into itself. Since L(Ψ) is a closed subset of C(Ψ), it
follows that the fixed point s0 of the operator T belongs to L(Ψ) (see Stokey, Lucas and
Prescott 1989, page 52).
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(iii) LetM(Ψ) denote the set of functions r : Ψ → R such that r ∈ L(Ψ) and rz : Z×Y → R

is non decreasing in z. Given a function r ∈M(Ψ), let r̃ denote Tr. As we proved in part
(ii), the function r̃ belongs to the set L(Ψ). Also as we proved in part (ii), the derivative
r̃z(z; y) is equal to (A10). Using the optimality conditions (A7)—(A9), we can rewrite (A10)
as

r̃z (z, y) = b+ βEru (y+) + maxd∈[δ,1]{(1− d)[y + z − b+ βE[rz (z, ŷ)− ru (ŷ)]]

+ (1− d)λe maxθ∈R+ [−kθ + p (θ) [−z + βE[
∑

i rz (z, ŷ) f(zi)− rz (z, ŷ)]]]}.

Since rz(z; y) is non decreasing in z, it follows that r̃z(z2; y) ≥ r̃z(z1; y) for all z2 ≥ z1.
Hence, the operator T maps the set M(Ψ) into itself. Since M(Ψ) is a closed subset of
L(Ψ), it follows that the fixed point s0 belongs to M(Ψ) as well. �

D. Proof of Theorem 4.2

(i) We want to prove that a Tractable Recursive Equilibrium exists. To this aim, we first
construct a supposed equilibrium {D∗,m∗, U∗, V ∗, d∗, θ∗} from the solution to the social
planner’s problem. Then, we verify that the putative equilibrium satisfies conditions (i)—
(iv) in Definition 1.

In the supposed equilibrium, the worker’s value from unemployment U∗(y) is set equal
to b + βEs0u(ŷ), where s0u is the derivative of the social planner’s value function s0 with
respect to the unemployment rate. The firm’s and worker’s joint value from a match
V ∗(z; y) is set equal to y+ z+ βEs0z(z; ŷ), where s0z is the derivative of the social planner’s
value function with respect to g(z). The market tightness function θ∗(x; y) is set equal
to q−1(k/(

∑
i V

∗(zi; y)f(zi) − x)) for all x ≤ x̃(y); and θ∗(x; y) is set equal to zero for all
x > x̃(y). Finally, the worker’s search value function D∗(υ; y) and policy function m∗(υ; y)
are set equal to the maximum and the maximizer of p(θ∗(x; y)) (x− υ).

By construction, the market tightness function θ∗ satisfies the equilibrium condition (i).
Also by construction, the worker’s search value D∗ and policy m∗ satisfy the equilibrium
condition (ii). As proved in the main text, whenever conditions (i) and (ii) are satisfied,
we have that

m∗(υ; y) ∈ arg maxx{−kθ
∗(x; y) + p(θ∗(x; y))[

∑
i V

∗(zi; y)f(zi)− υ]}, (A12)

and D∗(υ; y) is the maximum of the problem in (A12). Hence the tightness θ∗u(y) of
the submarket visited by unemployed workers satisfies the optimality condition (E3); and
the tightness θ∗z(z; y) of the submarket visited by employed workers satisfies the optimality
condition (E4). Since U∗(y) is equal to b+βEs0u(ŷ) and V ∗(z; y) is equal to y+z+βEs0z(z; ŷ),
the tightness θ∗u(y) also satisfies the necessary condition (P3) for the optimality of the
solution to the social planner’s problem. Since (P3) admits only one solution, θ∗u(y) is
equal to θ0u(y). Similarly, we can prove that θ∗z(z; y) is equal to θ0z(z; y) and that d∗(z; y) is
equal to d0(z; y).

33



Since θ0u(y) is equal to θ∗u(y), the envelope condition (P6) can be written as

s0u(u) = U∗(y) + λuD
∗(U∗(y); y). (A13)

In turn, (A13) implies that U∗(y) is equal to

U∗(y) = b+ βEs0u(ŷ) = b+ βE[U∗(ŷ) + λuD
∗(U∗(ŷ); ŷ))]. (A14)

Hence U∗(y) satisfies the equilibrium condition (iii). Similarly, we can prove that the firm’s
and worker’s joint value from a match V ∗(z; y) satisfies the equilibrium condition (iv).

(ii) We want to prove that any equilibrium is efficient. To this aim, let {D∗,m∗, U∗, V ∗, d∗, θ∗}
denote a Tractable Recursive Equilibrium. Let s∗u(y) denote the worker’s value of unem-
ployment at the beginning of the separation stage, i.e. U∗(y)+λuD

∗(U∗(y); y). Let s∗z(z; y)
denote the firm’s and worker’s joint value of a match at the beginning of the separation
stage, i.e. V ∗(z; y) + λeD

∗(V ∗(z; y); y). Let θ∗u(y) denote the tightness of the submarket
visited by unemployed workers, i.e. θ∗u(y) = θ∗(m∗(U∗(y); y); y). And let θ∗z(z; y) denote the
tightness of the submarket visited by workers who are employed at jobs with idiosyncratic
productivity z, i.e. θ∗z(z; y) = θ∗(m∗(V ∗(z; y); y); y).

Define the function r : Ψ → R as ru(y)u +
∑
rz(z; y)g(zi), where ru(y) is equal to s∗u(y)

and rz(z; y) is equal to s∗z(z; y). Given the function r, consider the problem (A6). For each
(y, u, g) ∈ Ψ, the optimal market tightness θ̃u(y) satisfies the condition

k ≥ p′(θ̃u(y)){y − b+ βE[
∑

i rz(zi; ŷ)f(zi)− ru(ŷ)]} (A15)

and θ̃u(y) ≥ 0, with complementary slackness. Since rz(zi; ŷ) = s∗z(zi; ŷ) and ru(ŷ) = s∗u(ŷ),
θ̃u(y) also satisfies condition (E4). Since (E4) admits only one solution, θ̃u(y) is equal to
θ∗u(y). Similarly, we can prove that the optimal tightness θ̃z(z; y) is equal to θ∗z(z; y). And
we can prove that the optimal job destruction probability d̃(z; y) is equal to d∗(z; y).

Define the function r̃ : Ψ → R as Tr. As we proved in Proposition 2, r̃ belongs to the set
L(Ψ). As we also proved in Proposition 2, the derivative r̃u(y) is equal to

r̃u(y) = −kλuθ̃u(y) +
[
1− λup(θ̃u(y))

]
[b+ βEru(ŷ)] +

+λup(θ̃u(y)) {y + βE [
∑

i rz(zi; ŷ)f(zi)]} .
(A16)

Since rz(zi; ŷ) = s∗z(zi; ŷ), ru(ŷ) = s∗u(ŷ) and θ̃u(y) = θ∗u(y), the right hand side of (A16) is
equal to the right hand side of (E5). Hence r̃u(y) is equal to s∗u(y). Similarly, we can prove
that r̃z(z; y) is equal to s∗z(zi; y). Taken together, these two observations imply that

(Tr)(ψ) = s∗u(y)u+
∑

i s
∗

z(zi; y)g(zi) = r(ψ). (A17)

Since it is a fixed point of the operator T , r is equal to the social planner’s value function
s0. And the policy {θ̃u, θ̃z, d̃} = {θ∗u, θ

∗

z , d
∗} is equal to the solution to the social planner’s

problem {θ0u, θ
0
z , d

0}. �
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Table 1: U.S. Quarterly Data, 1951:I—2006:II

u v hue heu hee p
Average .056 63.9 .452 .026 .029 84.2

Relative Std 12.2 13.5 7.56 7.03 4.15 1

Quarterly Acr .873 .905 .820 .692 .595 .761

u 1 -.919 -.920 .777 -.631 -.250

v – 1 .907 -.784 .661 .410

hue – – 1 -.677 .664 .258

heu – – – 1 -.289 -.480

hee – – – – 1 .173

p – – – – – 1

Source: Bureau of Labor Statistics.

Table 2: Calibration Outcomes

Description (a) Baseline (b) P85 Target

β discount rate .996 .996 real interest rate

b home productivity .983 .710 EU rate

λu off the job search prob. 1 1 normalization

λe on the job search prob. .807 – EE rate

γ elasticity of p wrt θ .650 .220 reg. coef. of v/u on hue

k vacancy cost 1.74 2.84 UE rate

δ destruction prob. .010 .027 tenure distribution

αz shape idios. prod. 3 – tenure distribution

σz scale idios. prod. .838 – home/mkt prod.

µz average idios. prod. 0 – normalization

σy std. agg. prod. 1.52 1.02 std. average prod.

ρy autocorr. agg. prod. 0.76 0.76 std. average prod.
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Figure 1: Tenure Distribution
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Table 3: Productivity Shocks

u v hue heu hee p
Relative Std 10.4 4.01 3.04 8.67 9.15 1

Quarterly Acr .831 .645 .772 .755 .790 .774

u 1 -.801 -.969 .969 -.975 -.971

v – 1 .904 -.887 .883 .896

hue – – 1 -.963 .984 .985

heu – – – 1 -.957 -.974

hee – – – – 1 .988

p – – – – – 1

Figure 3: Impulse Response Functions
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Table 4: Productivity Shocks in P85

u v hue heu hee p
Relative Std .667 2.78 .742 0 – 1

Quarterly Acr .826 .726 .770 1 – .771

u 1 -.946 -.974 0 – -.974

v – 1 .994 0 – .994

hue – – 1 0 – .999

heu – – – 1 – 0

hee – – – – – –

p – – – – – 1

Figure 4: Impulse Response Functions in P85
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