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1 Introduction

We present the �rst analysis of aggregate dynamics in a popular class of search wage-posting

models. We study the transitional dynamics of the Burdett and Mortensen (1998, henceforth BM)

equilibrium search model. This framework was originally formulated to explain the well-known fact

that seemingly identical workers are paid di¤erent wages. The BM model, and the vast theoretical

and empirical literature on wage inequality that it generated, are invariably cast in steady state.

They have, however, speci�c predictions also for variables of interest to business cycle theorists,

such as (un)employment and productivity. Our characterization of the dynamics of the BM model

opens the analysis of aggregate labor market dynamics as a whole potential new �eld of application

of search/wage-posting models. We hope to contribute to a synthesis of the BM approach with the

�other�, equally successful side of the search literature, organized around the matching framework

(Pissarides, 1990; Mortensen and Pissarides, 1994) as a representative agent approach to understand

labor market �ows and equilibrium unemployment.

In a companion paper (Moscarini and Postel-Vinay, 2008) we document distinct comovements at

business cycle frequencies among several key variables of the BM model: unemployment, job-to-job

quits, labor productivity, labor share of income, wage distribution, size distribution of employers,

and patterns of employment reallocation across employers. These comovements suggest a new

view of how aggregate expansions evolve and mature. Following a positive aggregate shock to

labor demand, wages respond little on impact, and start rising only when �rms run out of cheap

unemployed hires and start competing to poach and to retain employed workers. In the other paper,

we show that a calibrated example of the dynamic wage posting model analyzed here replicates to

a good extent the facts. A key insight is that the evolution of average wages and labor productivity,

and more generally the propagation of aggregate shocks, rests on the shape and on the evolution of

the distributions of wages and workers across employers. Therefore, BM�s non-representative agent

approach can be fruitfully extended to shed new light on macroeconomic �uctuations.

As a contribution more speci�c to the wage posting literature, we study the robustness of the

BM results, whose analysis crucially exploits steady-state restrictions. The �rst question is whether
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the BM steady state equilibrium is at least locally stable. Our answer is a mildly quali�ed yes.

Ever since the inception of the BM model, job search scholars have regarded the characterization

of its out-of-steady-state behavior as a daunting problem, essentially because one of the model�s

state variables, which is also the main object of interest, is the endogenous distribution of wage

(or job value) o¤ers. Under the BM assumption of random search, this distribution determines

the individual incentives of each �rm to post and of each worker to search for wage o¤ers. This is

an in�nite-dimensional object, endogenously determined in equilibrium as the distribution across

a continuum of �rms of strategies that are all best responses to one another.

We �nd a way around this problem by considering a class of equilibria satisfying what we call

the Rank-Preserving property, i.e. equilibria in which the workers�ranking of �rms is time-invariant.

We show that this class of equilibria is generic if all �rms are equally productive. We further show

that the same property holds in equilibrium when �rms have heterogeneous productivity, where

more productive �rms o¤er a larger value and employ more workers at all points in time, if (but

not only if) they have more employees to begin with. We view the fact that the workers�ranking of

�rms also re�ects the hierarchy of productivity in a Rank-Preserving Equilibrium in the presence

of productive heterogeneity across �rms as a very appealing property of the model. It parallels a

similar property of BM�s static equilibrium, and in ensures constrained-e¢ cient labor reallocation

at all dates.

The paper has four sections after this Introduction and before a short Conclusion. In Section

2 we lay out the basic assumptions on the economic environment and state the typical �rm�s

optimization problem. Dynamic equilibria are characterized in Section 3. Section 4 discusses the

results and Section 5 further endogenizes labor demand by letting �rms decide on an endogenous

hiring e¤ort.
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2 Model and Individual Behavior

2.1 The Environment

The model is a near-exact replica of the BM wage posting model with heterogeneous �rm types.

Time is continuous. The labor market is populated by a unit-mass of workers who can be either

employed or unemployed. It is a¤ected by search frictions in that unemployed workers can only

sample job o¤ers sequentially at some �nite Poisson rate �0 > 0. Employed workers are allowed

to search on the job, and face a sampling rate of job o¤ers of �1 > 0. Firm-worker matches are

dissolved at rate � > 0. Upon match dissolution, the worker becomes unemployed. All workers are

ex-ante identical: they are in�nitely lived, risk-neutral, equally capable at any job, and they attach

a common lifetime value of Ut to being unemployed at date t.

Workers face a measure N of active �rms operating constant-return technologies with hetero-

geneous productivity levels p � � (�) among �rms, and density 
 = �0. The sampling of �rms

by workers is not necessarily uniform, in that a type-p �rm has a sampling weight of q (p) > 0.

Sampling weights are normalized to ensure that their cumulated sum � (p) :=
R p
p q (x) 
 (x) dx is a

(sampling) cdf, i.e. � (p) = 1. The sampling density of a type-p �rm is therefore ' (p) := q (p) 
 (p).

This naturally encompasses the conventional case of uniform sampling which has q (p) = 1 for all

p.1

At some initial date which we normalize at t0 = 0, each �rm of a given type p commits to a

wage pro�le fwt (p)gt2[0;+1) over the in�nite future, the same wage to be paid to all workers. We

generalize the BM restrictions placed on the set of feasible wage contracts to a non-steady-state

environment by preventing �rms from making wages contingent on anything else than calendar

time.2

1There are three possible interpretations of sampling weights, First, they re�ect the di¤erent visibility of employers
of di¤erent sizes, due to informational spill-overs across workers connected in social networks. Alternatively, they are
a shortcut for directed search: if search has any element of directness, people will apply more to high paying �rms
(which higher-p �rms will turn out to be in equilibrium). Finally, and perhaps most naturally, they may re�ect the
relative density of vacancies posted by a �rm of productivity p, with random meetings between all vacancies and all
job searchers mediated by a standard matching function. This last possibility endogenizes both sampling weights q
and arrival rates �0, �1, as we discuss it in detail in Section 5.

2Or, less stringently, we allow �rms to index wages to any aggregate variable that evolves monotonically over time
(e.g. the unemployment rate). We thus rule out, among other things, wage-tenure contracts (Stevens, 2004; Burdett
and Coles, 2003), o¤er-matching or individual bargaining (Postel-Vinay and Robin, 2002; Dey and Flinn, 2005;
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Any such pro�le fwt (p)gt2[0;+1) o¤ered by any type-p �rm yields a continuation value ofWt (p)

to any worker employed at that �rm at any date t. The (time-varying) sampling distribution of job

values is denoted as Ft (�), and its relationship to the sampling distribution of �rm types � (�) will

be discussed momentarily. Because from the workers�viewpoint jobs are identical in all dimensions

but the wage pro�le, employed jobseekers quit into higher-valued jobs only. This gradual self-

selection of workers into better jobs implies that the distribution of job values in a cross-section of

workers� which will be denoted as Gt (�)� di¤ers from the sampling distribution Ft (�).

2.2 The Contract Posting Problem

Firms post wage pro�les over an in�nite horizon that solve the following problem:

�0 (L0 (p) ; p) = max
fwtg

Z +1

0
(p� wt)Lt (p) e�rtdt (1)

subject to: �Wt (p) = _Wt (p) + wt � � [Wt (p)� Ut] + �1
Z +1

Wt(p)
[x�Wt (p)] dFt (x) (2)

_Lt (p) = �
�
� + �1F t (Wt (p))

�
Lt (p) +

q (p)

N
[�0ut + �1 (1� ut)Gt (Wt (p))] (3)

wt � w; (4)

where Lt (p) denotes a type-p �rm�s workforce at date t,3 w is the exogenous institutional minimum

wage, Ut is the workers�lifetime value of unemployment, r (�) is the �rms�(workers�) discount rate,4

and F t (�) = 1 � Ft (�) designates the survivor function associated with Ft (�). When solving (1),

the typical �rm of productivity p also is also constrained by its given initial size L0 (p).

The �rm�s problem has two state variables that the �rm controls through the wage. First, the

chosen path of wages translates through the Hamilton-Jacobi-Bellman equation (2) into a value

Wt (p) for the worker of employment at that type-p �rm. The worker�s opportunity cost �Wt (p)

equals the capital gain plus the �ow wage minus the capital loss when the match is destroyed

Cahuc, Postel-Vinay and Robin, 2006), contracts conditioned on employment status (Carrillo-Tudela, 2007). Note,
however, that the model can be generalized to allow for time-varying individual heterogeneity under the assumption
that �rms o¤er the type of piece-rate contracts described in Barlevy (2008). In that sense experience and/or tenure
e¤ects can be introduced into the model. Shimer (2008) proposes an alternative formulation, which maintains BM�s
restriction of a constant posted wage, even out of steady state, and delivers a few of the same results.

3 Incidentally, this implies that the density of �rm types among workers at date t is given by NLt (p) 
 (p) = (1� ut).
4Although in some of what follows we will occasionally comply with standard practice and impose a common

discount rate on �rms and workers (i.e. assume r = �), this restriction is by no means essential. Indeed other cases,
such as the case of myopic workersthat we analyze in detail, are of potential interest.
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exogenously at rate �, plus the capital gain that occurs at rate �1F t (Wt (p)) when the worker

receives and o¤er which also turns out to provide him with a higher value. This o¤er is drawn from

the endogenous o¤er distribution Ft (�), which is the cross-section distribution at time t of all such

values o¤ered by other �rms.

The value Wt (p) o¤ered by a type-p �rm translates into in�ows and out�ows of workers. The

only friction in the model is search, so the boundaries of the �rm are de�ned by attrition, retention

and hiring. Equation (3), describes the evolution of the �rm�s employment. Following standard

practice, we impose a law of large numbers at the individual �rm�s level and we treat the evolution

of �rm size as deterministic, although it is the result of various random events. These include

separations� both exogenous at rate � and endogenous at rate �1F t (Wt (p)) when a worker receives

a better o¤er� which reduce employment, and accessions from both unemployment (at rate �0) and

from other �rms that are paying their workers less than Wt (p).

At the individual �rm�s level, the sampling and cross-sectional distributions of job values Ft (�)

and Gt (�) are given macroeconomic quantities that no individual �rm can a¤ect with its choice.

Given all �rm�s choices of wages, and the implied worker values Wt (p) and �rm sizes Lt (p), they

are de�ned by

Ft (W ) =

Z p

p
I fWt (x) �Wg q (x) d� (x) (5)

Gt (W ) =

R p
p Lt (x) I fWt (x) �Wg d� (x)R p

p Lt (x) d� (x)
(6)

where I f�g is an indicator function. Notice that both are normalized to be proper c.d.f.�s. Also

notice an important restriction that was kept implicit so far: the de�nitions in (5) and (6) are

only valid in symmetric equilibria where there is no dispersion in �rm size conditional on p (i.e.

p 7! Wt (p) and p 7! Lt (p) are well-de�ned mappings for all t). Although this restriction will

receive some further discussion below, we will essentially limit our attention to such equilibria in

the rest of the paper.
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Similarly, a single �rm cannot a¤ect the value of unemployment, which solves the HJB equation:5

�Ut = _Ut + b+ �0

Z +1

Ut

(x� Ut) dFt (x) (7)

with b denoting the income �ow in unemployment, or the unemployment rate ut, which solves

_ut = � (1� ut)� �0ut; with u0 = 1�N
Z p

p
L0 (x) d� (x) given: (8)

2.3 An Equivalent Value-Posting Problem

The formulation of the contract-posting problem spelled out in equations (1) - (8) above can be

simpli�ed somewhat. First, to simplify notation, we rede�ne the �rm�s employment by normalizing

by its sampling weight

`t (p) :=
N

q (p)
Lt (p) (9)

so that initial unemployment is derived from the initial distribution of employment u0 = 1 �R p
p `0 (x) d� (x) and

_̀
t (p) = �

�
� + �1F t (Wt (p))

�
`t (p) + �0ut + �1 (1� ut)Gt (Wt (p)) : (10)

The problem of the �rm is then (1) subject to (2), (4), (7), (8), (10).

Next, the �rm�s objective (1) can be recast as follows by substitution of the workers� value

function (2) and integration by parts using (10):

Z +1

0
(p� wt) `t (p) e�rtdt = �W0 (p) `0 (p)

+

Z +1

0

��
p+ �1

Z +1

Wt

xdFt (x) + �Ut + (r � �)Wt

�
`t (p)

�Wt [�0ut + �1 (1� ut)Gt (Wt)]

)
e�rtdt:

This formulation decomposes the discounted sum of future pro�ts accruing to the �rm into the sum

of two terms: the total present value of the �rm measured by the second (integral) term, less the

5 In formulating (1), we assume for simplicity that any job o¤er posted in equilibrium is preferred to unemployment,
i.e. infpWt (p) � Ut at all t. This is achieved by assuming that the minimum wage w is su¢ ciently higher than b for
unemployed workers to �nd even the least valuable job o¤er worth accepting.
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�rst term W0 (p) `0 (p) which equals the total value transferred by the �rm to its initial workforce

at date t = 0.

For any given initial value W0 (p) (and temporarily ignoring the minimum wage constraint (4)

for simplicity � we will reintroduce it later on), the initial contract posting problem (1)-(2) can

be restated as the following mathematically equivalent problem:

�0 (`0 (p) ; p) = max
fWt2[ br ;

p
r+� ]g

Z +1

0

��
p+ �1

Z +1

Wt

xdFt (x) + �Ut + (r � �)Wt

�
`t (p)

�Wt [�0ut + �1 (1� ut)Gt (Wt)]

)
e�rtdt (11)

subject to (10) and `0 (p) given.

Notice that values can be chosen WLOG in the compact set
h
b
r ;

p
r+�

i
. Any value strictly below

b=r will be declined by the workers, who will quit to unemployment as Ut � b=r, hence all such

values yield and equivalent pro�t and can be ignored. Values above p= (r + �) exceed what any

�rm can physically deliver. Therefore, this is a well-de�ned optimal control problem even ignoring

the minimum wage constraint.

While control problems generally admit piece-wise continuous solutions, in this particular case

we must further restrict the optimal path of worker values, say fW ?
t (p)gt>0 to be continuously

di¤erentiable at all dates and right-continuous at t = 0 as it has to solve the original HJB equation

(2). Moreover, any such optimal path will turn out to be independent of the initial valueW0 (p) (see

below). As a consequence, the the initial contract posting problem (1) is literally equivalent to the

reformulated problem (11) with the initial workers�value being de�ned as W0 (p) = limt&0W
?
t (p).

Couching the contract posting problem as the choice of a path of values as in (11) rather than

the choice of a wage path as in (1) brings about an important simpli�cation in that (11) is a problem

featuring only one state variable, `t (p), with a �xed initial value.

Before we move on to solving (11), we should clarify that our formulation of the contract-posting

game and the �rm�s best-response problem contains the assumption that �rms are bound by an

equal treatment constraint : a �rm must pay all of its workers the same wage, irrespective of when

they were hired, from where, and of the outside o¤ers that some of them may have received. In
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particular, the �rm does renege on its promised wage, cannot condition the wage on tenure or

received outside o¤ers, and more generally does not respond to outside o¤ers to its employees, but

lets them go if they are o¤ered more.6

2.4 Optimality Conditions

The current value Hamiltonian of problem (11) is de�ned by:

Ht (p) =
�
p+ �1

Z +1

Wt

xdFt (x) + �Ut + (r � �)Wt

�
`t (p)�Wt [�0ut + �1 (1� ut)Gt (Wt)]

+ �t (p)
�
�
�
� + �1F t (Wt)

�
`t (p) + �0ut + �1 (1� ut)Gt (Wt)

	
;

where �t (p) is the costate variable. Denoting the optimal value o¤ered by a type-p �rm by Wt (p),

the optimality conditions are:

�0ut + �1 (1� ut)Gt (Wt (p)) + (�� r) `t (p)

= �1 [�t (p)�Wt (p)] [ft (Wt (p)) `t (p) + (1� ut) gt (Wt (p))] (12)

_�t (p) =
�
r + � + �1F t (Wt (p))

�
�t (p)�

"
p+ �1

Z +1

Wt(p)
xdFt (x) + �Ut + (r � �)Wt (p)

#
(13)

lim
t!+1

e�rt�t (p) `t (p) = 0: (14)

Supplementing this latter set of conditions with the state equations (7), (8) and (10), we obtain

a system of partial di¤erential equations characterizing the solution to an individual �rm�s max-

imization problem for a given path of sampling distributions fFt (�)gt2[0;+1). Given a solution to

that system, the optimal wage path can be retrieved using (2). The main di¢ culty, however, lies

in characterizing the equilibrium fFt (�)gt2[0;+1), i.e. the path of sampling distributions which is

consistent with the above dynamic system simultaneously for the whole population of �rms. This

task will be carried out in the following section. Before we turn to that, however, it is worth spelling

out some economic interpretation of the above optimality conditions.

6As argued in Moscarini (2005), not responding to outside o¤ers is a sequential equilibrium of an ascending (Eng-
lish) auction between the incumbent and the poacher, and the unique equilibrium which survives natural re�nements.
The more productive of the two �rms wins without o¤ering more than it does to its other workers, because it can
always respond to any attempt by the competitor to outbid it, even if the competitor trembles. In this case, our
assumption of no ex-post competition is not particularly restrictive. If the auction is instead simultaneous with
either one bid or a sealed bid, as in Bertrand (Postel-Vinay and Robin, 2002), then �rms would bid their maximum
valuation and our assumption has bite.
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As usual in economic applications of optimal control, the costate variable �t (p) is interpreted

as the imputed (or shadow) unit value of the state variable `t (p) at date t. Because (1) is formally

a maximization of the total value of the �rm, �t (p) is indeed the shadow value to the �rm-worker

match (rather than to the �rm) of the marginal unit of labor. The �rm�s shadow value of the

marginal unit of labor �t (p) is obtained by subtracting the worker�s value: �t (p) := �t (p)�Wt (p)

and solves the following Euler equation:

_�t (p) =
�
r + � + �1F t (Wt (p))

�
�t (p)� (p� wt (p)) (15)

which in turn was obtained by subtracting (2) from (13).

The �rst-order condition (12) re�ects a balance between the �rm�s present-value cost and bene�t

of marginally changing its posted value at date t. The RHS of (12) equals �t (p) � @
_̀
t(p)
@Wt

and clearly

re�ects the bene�t of o¤ering a marginally higher value stemming from the larger workforce achieved

through the implied higher retention and hiring rates. To see how the LHS of (12) re�ects the cost

of a marginal increase in the value transferred to workers, it may help to view an employer�s

commitment to transferring a certain value to its workers as that employer running up a debt to

its employees. The (net) interest paid by the employer on a stock of debt of Wt (p) to each of its

workers equals the workers� overall discount rate, � + � + �1F t (Wt (p)) (which results from the

combination of sheer time discounting at rate � plus a �depreciation rate� of � + �1F t (Wt (p))

re�ecting future match dissolution, either through job destruction or the worker quitting), less the

�rm�s discount (or interest) rate r. A unit increase in the value o¤ered to all of the �rm�s employees

then adds `t (p) to the �rm�s stock of debt. The marginal cost of such an addition to the stock

of debt is an increase in the debt burden which in turn results from the net interest paid on that

debt being raised by
�
�� r + � + �1F t (Wt (p))

�
`t (p) plus an extrinsic expansion/contraction term

_̀
t (p) re�ecting the fact that the stock of debt is by nature indexed to workforce size. The sum of

these latter two terms is equal to Equation (12)�s LHS.

Equation (13) describes the dynamics of the shadow value of the marginal unit of labor. It has a

straightforward asset-pricing-type interpretation, whereby the �rm�s marginal employee is viewed as

an asset priced at �t (p). The annuity value of the marginal employee,
�
r + � + �1F t (Wt (p))

�
�t (p),
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must then equal the return on the corresponding asset which is the sum of a dividend term (in

square brackets) plus a capital gain term _�t (p). That dividend term is the sum of a pro�t �ow of

p� wt (p) accruing to the employer (see Equation (15)) and an (expected) �ow income of wt (p) +

�Ut + �1
R +1
Wt(p)

xdFt (x) accruing to the worker (see Equation (2)).

3 Equilibrium Characterization

De�nition 1 (Equilibrium) An equilibrium of the dynamic contract-posting game is a vector of

di¤erentiable functions [Wt (p) ; �t (p) ; `t (p) ; Ut; ut] which solve the optimality conditions (12), (13)

and (14), the state equations (7), (8) and (10), and the consistency conditions (5) and (6) given

`0 (p) and u0 = 1�
R
`0 (p) dp.

Having de�ned the object of interest, we now return to the main hurdle that we face in describing

it and solving the contract-posting dynamic game. We need to �nd strategies whose distributions

across �rms evolve according to Ft, induce a distribution Gt of values across employed workers, and

are all best-responses to each other.

This formidable problem has hampered the analysis of aggregate dynamics in wage posting

models with random search. To gain some insight, we �rst observe that the complications derive

entirely from the forward-looking aspect of workers�behavior. In fact, in Appendix D we prove that

when workers are myopic and only care about the current wage (� = +1), the only equilibrium is

such that wages jump immediately to the same stationary wage distribution as in BM. This simple

property is lost in the general, and interesting, case where workers care about future wages and the

option of quitting to better-paying jobs.

We begin by arguing that Ft and Gt cannot have atoms in equilibrium at almost all points in

time, so a density ft and gt indeed exists almost everywhere in p and t. The argument is the same

as in BM: if there was an atom of �rms o¤ering the same value for an interval of time of nonzero

length, one of them could gain by deviating and o¤ering an " more, winning the competition against

the atom every time it arises, at an in�nitesimal cost. Atoms in Gt exist if and only if atoms in Ft

do. This argument, however, does not rule out atoms at countable points in time, where the paths

10



of values o¤ered by a set of �rms of positive productivity measure happen to cross simultaneously,

an issue that did not arise in BM�s steady state analysis.

Next, we focus on a particularly tractable and natural class of equilibria, which satisfy what we

call a Rank-Preserving (RP) property. We show conditions under which all equilibria must satisfy

this property, implying uniqueness of equilibrium as an added bonus. The conditions have a natural

economic interpretation. Finally, we fully characterize the dynamics of �rm size, wage and value

o¤ers in a RP equilibrium.

3.1 The Rank-Preserving Property

A tractable class of equilibria, and in many cases the only type of equilibrium, has the following

property:

De�nition 2 (Rank-Preserving Property) An equilibrium is Rank-Preserving if �rms post val-

ues that are strictly increasing in p for all t.

A direct consequence of the above de�nition is that in a RPE workers rank �rms according

to productivity at all dates. The following two properties hold true at all dates under the RP

assumption:

Ft (Wt (p)) � � (p) and (1� ut)Gt (Wt (p)) =

Z p

p
`t (x) d� (x) :

In addition to considerably simplifying equilibrium determination (see below), the RP assump-

tion is theoretically appealing for at least two reasons. First, it parallels a well-known property of

the static equilibrium characterized by BM, which is to have a unique equilibrium where workers

rank �rms according to productivity. Second, RPE feature constrained-e¢ cient labor reallocation

at all dates: if workers consistently rank more productive �rms higher than less productive ones,

then job-to-job moves will always be up the productivity ladder.7 The following natural question

is therefore to ask about the generality of these rank-preserving equilibria. Given the de�nition of

a RPE spelled out above the following two propositions can be established:

7We thank Pat Kline for pointing this out to us.

11



Proposition 1 (Ranked Initial Firm Size Implies Rank-Preserving Equilibrium) If the ini-

tial state of the economy is such that `0 (p) is non decreasing in p (i.e. higher-p �rms are no smaller

in sampling-weight-adjusted terms), then any equilibrium of the dynamic value-posting game is nec-

essarily rank-preserving.

The proof of this �rst proposition is in Appendix A. It builds on Caputo�s (2003) comparative

dynamic characterization of optimal controls in in�nite horizon problems, which itself is based on

the second-order condition of the primal-dual problem corresponding to (11).

This Proposition has a simple economic intuition, thus it appears to be a robust conclusion. In

BM�s steady state model, more productive �rms o¤er higher wages due to a single-crossing property

of their steady state pro�ts, which in turn re�ects two very basic economic forces. First, a higher

wage implies a larger �rm size, as a more generous o¤er makes it easier to poach workers and to

fend o¤ competition. Second, a larger �rm size is more valuable to a more productive �rm, because

each worker produces more. Therefore, by a simple monotone comparative statics argument, it

must be the case that more productive �rms o¤er more, employ more workers, and earn higher

pro�ts. Simply put, a productive �rm can a¤ord paying more, and is willing to do so to attract

workers, because its opportunity cost of not producing is higher. Key to this argument is the fact

that �rm size is an endogenous object, and BM look for an appropriate �rm size distribution which

guarantees a stationary allocation.

In our dynamic model, �rm size is a state variable, and its initial value is a parameter of the

model, arbitrarily �xed , not an endogenous object. Therefore, in order to get a start on monotone

comparative statics, it is su¢ cient (but not necessary) that the initial size distribution shares the

key property of BM�s steady state distribution; namely, it is increasing in productivity. In the

proof, we begin by invoking Theorem 2 of Caputo (2003), which in this case is equivalent to a

single-crossing property of the Hamiltonian of the value-posting problem. Given a ranked initial

size, a more productive �rm still wants and can a¤ord to pay more, now in terms of values accruing

to workers. The initial ranking of sizes by productivities is preserved throughout, so values o¤ered

to workers remain ranked by �rm productivity at all points in the future, even if the �rm were to

12



stop and re-optimize. This condition is only su¢ cient. We conjecture that it is not necessary, and

we are exploring this issue.

Proposition 2 (Rank-Preserving Stationary Allocations) For r in a neighborhood of zero,

the set of necessary optimality conditions for problem (1) has a unique steady-state symmetric

solution which is �rank-preserving� in the sense that:

� steady-state worker value V1 (p) is non decreasing in p;

� steady-state �rm size `1 (p) is non decreasing in p.

The proof is in Appendix B. This latter result should not come as a surprise to those familiar

with the BM model: if r ! 0, then �rms only care about steady-state pro�ts and our initially

dynamic optimization problem becomes confounded with the static BM problem, which has a

unique solution that is RP in the sense indicated in Proposition 2.

Taken together, Propositions 1 and 2 are statements about the generality of RPE. Speci�cally

these propositions establish that RPE are generic within the set of dynamic equilibria such that

there is no dispersion in �rm size among �rms of a common type p. Note that steady-state sym-

metric equilibria are necessarily in that class� as can be seen from the steady-state version of (3)

which shows that steady-state �rm size only depends on the value o¤ered in steady-state, V1 (p).

The �ip side of those arguments is that the RP property can transitionally break down because of

the entry of new �rms. For example an entrant �rm with a productivity level somewhere in the

interior of ��s support and an initial size of zero might be tempted to break ranks in one direction

or the other, depending on the shape of ft (�) and gt (�). With this caveat in mind, we now proceed

to a characterization of RPE.

3.2 Evolution of the Firm Size Distribution in RPE

Let us consider the stock of workers employed at a �rm of type-p or less,
R p
p `t (x) d� (x). In a RPE

(assuming one exists), those �rms hire workers from unemployment and lose workers to their more

productive competitors (�rms of type higher than p). The stock of workers under consideration

13



thus evolves according to:8Z p

p

_̀
t (x) d� (x) = �0ut� (p)�

�
� + �1� (p)

� Z p

p
`t (x) d� (x) :

The latter equation now solves as:Z p

p
`t (x) d� (x) = e

�[�+�1�(p)]t
 Z p

p
`0 (x) d� (x) + �0� (p)

Z t

0
use
[�+�1�(p)]sds

!
(16)

Now di¤erentiating with respect to p, on obtains a closed-form expression for the workforce of any

type-p �rm:

`t (p) = e
�[�+�1�(p)]t

"
`0 (p) + �1t

Z p

p
`0 (x) d� (x) + �0

Z t

0
[1 + �1 (t� s) � (p)]use[�+�1�(p)]sds

#
(17)

The steady-state versions of (16) and (17) are:

`1 (p) =
��0 (� + �1)

(� + �0)
�
� + �1� (p)

�2 and
Z p

p
`1 (x) d� (x) =

��0� (p)

(� + �0)
�
� + �1� (p)

� : (18)

This is the point at which the necessity for sampling weights appears. Note from equation

(18) that the steady-state size ratio of the largest to the smallest �rm in the market in units of

(non-normalized) employment is

L1 (p)

L1
�
p
� = `1 (p) q (p)

`1
�
p
�
q
�
p
� = �1 + �1

�

�2 q (p)
q
�
p
� :

With uniform sampling (q (p) � 1 throughout), this ratio would equal
�
1 + �1

�

�2
, which is in the

order of 25-30 given standard estimates of �1 and �. Now of course the data counterpart of that

size ratio is virtually in�nite. More generally, it appears that the BM model requires a sampling

distribution that is very heavily skewed toward high-productivity �rms in order to replicate the

observed distribution of �rm sizes.

Before going any further into characterizing Rank-Preserving Equilibria, we should notice that

the analysis of �rm size and employment dynamics carried out in this paragraph would apply to

any job ladder model in which a similar concept of RPE can be de�ned. Indeed nothing in the

8Note that the following law of motion can also by obtained by integration of (3) w.r.t. p. Details available on
request.

14



dynamics of Lt or ut depends on the particulars of the wage setting mechanism, so long as this is

such that employed jobseekers move from lower-ranking into higher-ranking jobs in the sense of a

time-invariant ranking. Therefore, this model�s predictions about everything relating to �rm sizes

are in fact much more general than the wage- (or value-) posting assumption retained in the BM

model.

3.3 Wage Contracts in RPE

We now go back to the dynamical system characterizing the behavior of the typical individual �rm,

and analyze it in a RPE. The system in question is comprised of the set of optimality conditions

(12) - (14) plus the set of state equations (10), (2) and (8). For simplicity, we now assume equal

discount rates for workers and employers from now on (i.e. r = �).

The RP assumption changes the system (12) - 14) into: 
�0ut + �1

Z p

p
`t (x) d� (x)

!
W 0
t (p) = 2�1' (p) `t (p) (�t (p)�Wt (p)) (19)

_�t (p) =
�
r + � + �1� (p)

�
�t (p)� �1

Z +1

p
Wt (x) d� (x)� �Ut � p (20)

lim
t!+1

e�rt�t (p) = 0: (21)

Di¤erentiation of (20) w.r.t. p yields (primes denote di¤erentiation w.r.t. p while dots denote time

di¤erentiation):

_�0t (p) =
�
r + � + �1� (p)

�
�0t (p)� �1' (p) (�t (p)�Wt (p))� 1: (22)

This, together with (19) and the de�nition of the �rm�s shadow value of the marginal worker

�t (p) := �t (p)�Wt (p), gives the following system of two PDEs in (�0t (p) ; �t (p)):

_�0t (p) = R (p)�
0
t (p) +R

0 (p)�t (p)� 1

(23)

�0t (p) = �
0
t (p) +Bt (p)�t (p) :

where R (p) := r + � + �1� (p) is the e¤ective discount factor of the �rm, and

Bt (p) :=
2�1' (p) `t (p)

�0ut + �1
R p
p `t (x) d� (x)

:
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The system (23) can be solved numerically subject to some initial and boundary conditions.

�Initial�conditions are given by the steady-state solution to (23), which is characterized as:

�01 (p) =
1 + �1' (p)�1 (p)

r + � + �1� (p)

(24)

�1 (p) =

�
� + �1� (p)

�2
r + � + �1� (p)

 Z p

p

dx�
� + �1� (x)

�2 + �1
�
p
�
(r + � + �1)

(� + �1)
2

!
:

Now turning to boundary conditions, standard arguments prove that the lowest-type �rms have no

reason to pay more than the minimum wage: type p �rms can only hire from unemployment and

lose workers to poachers anyway, so trying to prevent poaching by raising wages is pointless for

those �rms in a RPE. While this implies that the minimum wage constraint (4) will bind at all dates

for the lowest-type �rm, it also implies that the following (time-invariant) boundary conditions are

satis�ed:

�t
�
p
�
�

p� w
r + � + �1

(25)

�0t
�
p
�
�
1 + �1'

�
p
�
�t
�
p
�

r + � + �1
;

where the second condition is obtained by combining the �rst one with the _�0t (p) equation in

(23). These boundary conditions can be further simpli�ed by imposing p = w, a kind of free-entry

condition holding throughout the adjustment toward the new steady state, which implies �t
�
p
�
� 0.

The minimum productivity p that can survive in the market is w, as any �rm with p > w can make

positive pro�ts by o¤ering w, and possibly even more by o¤ering a higher wage while no �rm with

p < w can ever make any pro�ts.

We note that (23) can also be written more compactly as one PDE in the �rm�s shadow value

of the marginal worker:

@2�t (p)

@t@p
+
@

@t
[Bt (p)�t (p)] =

@

@p
[R (p)�t (p)] +R (p)Bt (p)�t (p)� 1: (26)

Once either the PDE in (26) is solved for �t (p) or (23) is solved for (�0t (p) ; �t (p)), wages can be

16



retrieved from (15) (written under the RP assumption):

wt (p) = p�
�
r + � + �1� (p)

�
�t (p) + _�t (p) ;

which has the following familiar steady-state solution:

w1 (p) = p�
�
� + �1� (p)

�2 Z p

p

dx�
� + �1� (x)

�2 + p� w
(� + �1)

2

!
: (27)

This is exactly the BM solution for the heterogeneous �rm case (see equation (47) in Burdett and

Mortensen, 1998). This con�rms that our contracts are consistent with the BM steady-state wage-

posting equilibrium if the labor market is at a steady state. It is no longer the case o¤ steady-state,

however: posting a time-invariant wage is not, in general,9 a �rm�s best response to all other �rms

posting time-invariant wages.10

We now look back to the minimum wage constraint. The only �rm for which the minimum

wage constraint (4) is binding at the steady state characterized above is the lowest-type �rm, p. It

may be the case, however, that the constraint temporarily binds for some higher-type �rms over

the transition to that steady state, in which case the economy no longer behaves according to (23)

as this system was derived ignoring the minimum wage constraint (4). In our companion paper,

Moscarini and Postel-Vinay (2008), we describe an algorithm that constructs an equilibrium in

which w is allowed to temporarily bind for some �rms (at the lower end of the p-distribution) with

the restriction that it only bind over some initial period. In other words, any �rm can choose to

post the minimum wage for a while right after the occurrence of the productivity shock, but once

it ceases to do so it is not allowed to return to the minimum wage.

The aforementioned numerical algorithm can be used to numerically solve (23) and simulate

our model�s dynamic equilibrium to study its quantitative properties. This is the objective pursued

9A pedagogically interesting exception is the case of myopic workers (� = +1), fully characterized and discussed
in our companion paper Moscarini and Postel-Vinay (2008).
10To see this, notice that (15) and (19) yield two di¤erent growth rates for �t (p) if all wages are constant and the

economy is o¤ its steady state (so that �rm sizes change over time). Under constant wages, Equation (15) gives a
�t (p) which evolves as an exponential of time. But then with a constant wage and constant wages o¤ered elsewhere,
W 0
t (p) is constant over time, so dividing (19) by `t (p) tells us that �t (p) is proportional to the gross hiring rate, and

so �t (p) cannot be exponential in time (because the hiring rate is not an exponential function of time in a RPE). All
this implies that posting a constant wage in the face of competitors themselves posting constant wages violates the
�rm�s set of necessary optimality conditions.
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in Moscarini and Postel-Vinay (2008). As for the present theoretical analysis, we thus conclude our

equilibrium characterization with the following two remarks. First, as we already mentioned, our

constructive characterization of a RPE implies uniqueness within that class of equilibria. Second,

our analysis still leaves two open questions: (conditions for) existence of an equilibrium, which in

the RP case reduces to the relatively tractable problem of existence of a solution to a system of

PDEs; and the much harder issue of equilibrium play when our su¢ cient conditions for RP fails.

4 Discussion

4.1 Homogeneous Firms

The original motivation of the search literature exempli�ed by BM is to explain the large cross-

sectional variation in worker wages that remains even after controlling for observable and unob-

servable worker and �rm characteristics. The hallmark of the BM research program is to produce

a robust failure of the law of one price, whereas identical agents make identical trades a di¤erent

prices. In the light, the most striking and meaningful version of the BM model is the simplest

setting where all �rms and workers are identical. BM prove that the unique equilibrium must be

in asymmetric strategies and entail wage dispersion among identical workers.

The proof of Proposition 1 can be adapted to show that, in this case, whenever we start with

a continuous size distribution `0 (p) with no atoms, equilibrium is always RP. The logic is simple.

Now p plays the role of the rank in the initial `0 (p). An initially larger �rm wants to o¤er more

to its workers, although they produce just as much as anywhere else, because the retention e¤ect

of a more generous o¤er is more powerful the larger �rm size. Since there exists always a ranking

of �rms when `0 (p) has no atoms, then the RP always holds in equilibrium.

4.2 Comparison with BM�s Steady State Analysis

The exact relationship between our and BM�s analyses is subtle and an explicit comparison is now

in order. In our approach, a choice of parameters `0 (p), �0, � implies a unique initial unemployment

rate u0 and stationary unemployment rate u:

u0 = 1�
Z
`0 (x) 
 (x) dx Q

�

� + �0
= u
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Notice the initial distribution of employment `0 (p), thus the initial unemployment rate, are para-

meters that can be �xed arbitrarily. That is, they are given initial conditions, inherited somehow

from past history. In contrast, BM assume steady state: given � and �0, they choose (solve for)

the only possible employment distribution `BM (p) = `0 (p) which replicates itself and thus makes

the initial unemployment rate stationary: u0 = u. This equilibrium distribution `BM (p) turns out

to be RP.

If we also impose steady state, after solving for the optimal time-dependent contracts, we get the

same employment distribution as BM: we need to choose `0 (p) = `BM (p) to obtain stationarity.

That is, a best-response time-dependent wage is constant if the economy is in steady state. However,

if we �x `0 (p) arbitrarily, so generically the economy is not in steady state u0 6= u, but moves, then

no equilibrium can have constant wages: the best-response to constant wages paid by all �rms is

not a constant wage when unemployment changes over time.

Finally, if r is small and thus close (but not necessarily identical) to the r = 0 assumed by BM,

in any equilibrium of our model the size distribution converges necessarily to a RP stationary limit

`1 (p), which is the same as BM�s steady state `1 (p) = `BM (p).

4.3 Time Consistency of Equilibrium Contracts

As well known, wage- (or, in this case, contract-) posting models of frictional markets require a

credible commitment by �rms to ful�ll the terms of the promise. Taking advantage of job search

frictions and imperfect recall of past o¤ers, a �rm is tempted to exploit its bargaining power and

to renege on the contract right after the worker accepts the o¤er, to drive down the wage to its

reservation value. Coles (2001) provides an equilibrium reputational foundation for commitment

to the wage o¤er. In our dynamic context, a time-consistent contract should set to zero the �rm�s

shadow marginal value of the workforce �t (p) = �t (p)�Wt (p) = 0, in order to align the marginal

value of the match �t (p) to that of the worker Wt (p). As pointed out by Stevens (2004), the �rm

should e¤ectively sell itself to the worker, extracting all rents, and then let the worker appropriate

all the �ow output. Besides the obvious issue of credibility, liquidity constraints are a powerful

counter argument. Stevens proposes wage-tenure contracts, that Burdett and Coles (2003) develop
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further. We return later to this extension of the contract space.

Similarly, a �rm would like to �ght outside o¤ers to its own employees, and counter-o¤er when

its o¤er is not su¢ cient to poach a worker. Postel-Vinay and Robin (2002, 2004) investigate this

idea. The same tension exists in our setting. Moscarini (2004) illustrates an alternative reputational

mechanism to enforce this kind of commitment not to respond to outside o¤ers to own employees.

In our model, the optimal contract is in open-loop form, a pre-determined function of time.

By the principle of optimality, however, for any given time path of Ft and Gt, no �rm wants to

deviate from the initially chosen contract if this deviation has no impact on those aggregate paths.

If �rms could coordinate and re-optimize collectively, they would want to deviate, but this is not

an issue under a Nash equilibrium concept. For sequential equilibrium one needs to specify the

continuation strategies of all �rms after such a deviation. If �rms�actions are observed only by

the parties involved, the worker and at best a competing �rm, then any deviation will trigger a

cascade of reactions that will involve at best a countable number of �rms and workers down the

road, a zero measure set. Therefore, a �rm should not expect to change the continuous distribution

of values o¤ered and earned at any time in the future. Hence, our equilibrium is also sequential,

thus contracts are time-consistent, given the commitment power vis-a-vis workers. This argument

breaks down if all actions are publicly observed.

5 Vacancy Creation [in progress]

5.1 The Firm�s Extended Problem

So far, we have taken the arrival rates of o¤ers �0 and �1, and the sampling weight q as given

constants, thus shutting down an important part of labor demand. Suppose instead that a �rm p

needs to post vacancies in order to hire. Suppose that posting vt vacancies has a �ow cost c (vt),

where c is convex and smooth. Let vt (p) be the measure of vacancies posted by p� �rms at time

t. Let vt =
R p
p vt (p) d� (p) denote the aggregate stock of vacancies.

11 Suppose that a random CRS

matching functionm mediates meetings between unemployed and employed job searchers with open

11To avoid cluttering the notation, we normalize the total mass of �rms, N , at 1 throughout this section. Amending
this normalization is straightforward.
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vacancies, where the latter type of job seeker have a relative search intensity of �. Then contact

rates are endogenous and time-dependent:

�0t =
m (ut + � (1� ut) ; vt)

ut + � (1� ut)
and �1t = ��0t;

and so are sampling weights: qt (p) = vt (p) =vt.12 Note that �t (p) =
R p
p qt (x) d� (x) remains a

proper cdf at all points in time.

The choice of vacancies must be added to the control problem. While it cannot a¤ect the

arrival rate of o¤ers to workers, as each �rm is too small to make itself easily visible, it does

a¤ect the chance that the job application will land on a particular �rm type, namely, the sampling

distribution. Indeed the law of motion of employment at a type-p �rm, given an implemented path

of worker values and posted vacancies fWt; vtgt�0 writes down as:

_Lt (p) = �
�
� + �1tF t (Wt)

�
Lt (p) +

vt
vt
� [�0tut + �1t (1� ut)Gt (Wt)] : (28)

Note that the �rm size normalization in (9) is no longer convenient with time-varying sampling

weights. We therefore revert to the original notation, where Lt (p) is really the �number�of workers

employed at a type-p �rm.

The current-value Hamiltonian of the modi�ed �rm�s problem, which the �rm now maximizes

with respect to the pair of control variables (Wt; vt), now writes as:13

Ht (p) =
�
p+ �1t

Z +1

Wt

xdFt (x) + �Ut

�
Lt (p)�Wt �

vt
vt
� [�0tut + �1t (1� ut)Gt (Wt)]

� c (vt) + �t (p)
�
�
�
� + �1tF t (Wt)

�
Lt (p) +

vt
vt
� [�0tut + �1t (1� ut)Gt (Wt)]

�
:

12Note that we are treating both types of job seekers as perfectly substitutable inputs into the matching process (up
to the constant relative search intensity �). A possible alternative would have been to model vacancies as completely
directed toward a given type of job seeker, with separate search markets and di¤erent matching functions for employed
and unemployed workers. While the available evidence seems to buttress the latter option (Van Ours, 1995), we have
opted for a theoretically slightly simpler route.
13Again to streamline the following derivations we focus on the case of equal discount rates, r = �. This is

inconsequential.
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Optimality conditions are:

c0 (vt (p)) = [�t (p)�Wt (p)] �
1

vt
� [�0tut + �1t (1� ut)Gt (Wt)] (29)

vt (p)

vt
� [�0tut + �1t (1� ut)Gt (Wt (p))]

= �1t [�t (p)�Wt (p)]

�
ft (Wt (p))Lt (p) + (1� ut) gt (Wt (p))

vt (p)

vt

�
(30)

_�t (p) =
�
r + � + �1tF t (Wt (p))

�
�t (p)�

"
p+ �1t

Z +1

Wt(p)
xdFt (x) + �Ut

#
(31)

lim
t!+1

e�rt�t (p) `t (p) = 0: (32)

5.2 Rank-Preserving Equilibria

We now focus on RPE with endogenous vacancies. Such equilibria are characterized by the set of

conditions derived in the previous subsection, together with the condition W 0
t (p) > 0 for all (t; p),

which now implies:

Ft (Wt (p)) =

Z p

p

vt (x)

vt
d� (x) = �t (p) and (1� ut)Gt (Wt (p)) =

Z p

p
Lt (x) d� (x) :

First substituting into the law of motion of Lt (p), (28), and proceeding as we did in Subsection

3.2, it is easy to establish the following:Z p

p
Lt (x) d� (x) = e

�
R t
0 [�+�1s�s(p)]ds

 Z p

p
L0 (x) d� (x) +

Z t

0
�0sus�s (p) e

R s
0 [�+�1��� (p)]d�ds

!
;

(33)

which can be di¤erentiated w.r.t. p to obtain an expression for Lt (p).

Now turning to what the RP assumption implies for the necessary conditions (29)-(31) and

re-introducing the �rm�s shadow value of the marginal worker �t (p) := �t (p) � Wt (p), some

straightforward algebra leads to:

c0 (vt (p)) =
�t (p)

vt

 
�0tut + �1t

Z p

p
Lt (x) d� (x)

!
(34)

�0t (p) = �
0
t (p) +

2�1tLt (p) 
 (p)�t (p)

�0tut + �1t
R p
p Lt (x) d� (x)

(35)

_�0t (p) =
�
r + � + �1t�t (p)

�
�0t (p)� �1t
 (p)

vt (p)

vt
�t (p)� 1: (36)
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Note that (36) is a di¤erentiated version of (31) (following the same steps as in Subsection 3.3),

and that (35) can be slightly simpli�ed by appealing to the relationship between contact rates,

�1t = ��0t.

Dynamic RPE are characterized by the solution to the above system of PDEs, (34)-(36), com-

bined with (33) and the law of motion of unemployment, _ut = ��0tut + � (1� ut). While there is

little hope to derive a closed-form solution to that system, a simple �xed-point algorithm can be

used to obtain numerical solutions. Details of that algorithm are given in Appendix C.

5.3 Steady-state RPE and Model Calibration

Characterization of steady-state RPE with exogenous vacancies is essentially contained in equations

(18) and (24), which are the steady-state versions of (28), (33), (35) and (36). We repeat those

equations here, using the now-familiar notation q1 (p) = v1 (p) =v1 and '1 (p) = �01 (p) =

q1 (p) 
 (p):

L1 (p) =
��01 (� + �11) q1 (p)

(� + �01)
�
� + �11�1 (p)

�2 and
Z p

p
L1 (x) d� (x) =

��01�1 (p)

(� + �01)
�
� + �11�1 (p)

� ;
(37)

�01 (p) =
1 + �11'1 (p)�1 (p)

r + � + �11�1 (p)

(38)

�1 (p) =

�
� + �11�1 (p)

�2
r + � + �11�1 (p)

 Z p

p

dx�
� + �11�1 (x)

�2 + �1
�
p
�
(r + � + �11)

(� + �11)
2

!
:

Now characterization of steady-state RPE with endogenous vacancies is obtained from the above

system of steady-state conditions together with the steady-state version of the FOC describing the

�rm�s optimal vacancy-posting, (34):

c0 (v1 (p)) =
�1 (p)

v1

��01
� + �01

� + �11

� + �11�1 (p)
(39)

(with v1 =
R p
p v1 (p) d� (p)).

We are now in a position to calibrate the model based on its predicted steady-state wage and

�rm size distributions. Note that this calibration strategy can be carried out recursively: we begin

by calibrating the model ignoring endogenous vacancy creation (thus following similar steps to
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Moscarini and Postel-Vinay, 2008), and then use (39) together with a speci�cation of the vacancy

cost function to deduct the equilibrium distribution of vacancies.

� = r � �01 �11
0:0043 0:025 0:40 0:12

Baseline parameterization (steady state monthly values)

Speci�cally, we begin by picking values for the discount rate r and the (steady-state) transition

parameters �01, �11 and � as explicated in the table above. (The time unit is one month. The

value of r = � re�ects an annual discount rate of �ve percent. Note that the relative value of

�01 and �11 implies a relative search intensity of employed workers of � ' :3.) A steady-state

sampling distribution of �rm types �1 (�) is then calibrated following the Bontemps et al. (2000)

procedure in such a way that the predicted steady-state wage distribution �ts the business-sector

wage distribution observed in the CPS. Speci�cally, Equation (37) implies that the steady-state

cross-section CDF of wages, Gw (�) (say), is de�ned by:

�1 (p) =
(� + �11)Gw (w (p))

� + �11Gw (w (p))
) '1 (p) =

� (� + �11) gw (w (p))w0 (p)

(� + �11Gw (w (p)))
2 : (40)

Di¤erentiation of (27) then yields:

w0 (p) = 2�11'1 (p)
p� w (p)

� + �11�1 (p)
) p (w) = w +

� + �11Gw (w)

2�11gw (w)
:

A lognormal distribution is �tted to a sample of wages from the 2006 CPS and then used to

construct a sample of �rm types using the above relationship. The sampling distribution �1 (�)

that rationalizes this sample in a steady state (and given values of � and �11) is then retrieved

using (40).

Once a sampling distribution has been obtained, the underlying distributions of �rm types 
 (p)

and sampling weights q1 (p) are calibrated based on the employment-share/�rm-size relationship

observed in the Business Employment Dynamics data (see Moscarini and Postel-Vinay, 2008, for

details). That relationship is found to be well �tted by the following parametric form:

� (p) =

 
1� e��1Gw(w(p))

1� e��1

!�2
;
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with �1 = 8:0661 and �2 = 0:5843. Sampling weights are �nally retrieved as q1 (p) = '1 (p) =
 (p).

The �nal step in our calibration procedure consists of specifying and calibrating both a matching

function m (�) and a vacancy-posting-cost function c (�). We use a conventional Cobb-Douglas, CRS

speci�cation for the matching function:

m (u+ � (1� u) ; v) :=M � (u+ � (1� u))1�� v�; (41)

where � = 0:6 (a conventional value; see for instance Petrongolo and Pissarides, 2006) and M is a

scale parameter to be determined. Using the de�nition of the contact rate �01 at a steady state,

together with the steady-state relationship u1 + � (1� u1) = �+�11
�+�01

, one obtains the following

relationship between M and v1:

�01 =M

�
v1
� + �01
� + �11

��
:

Finally specifying the vacancy cost function as c (v) := Cv�, where � = 2 and C > 0 is another

scale parameter, inversion of (39) yields:

v1 (p) =

�
1

C�
� �1 (p)
v1

��01
� + �01

� + �11

� + �11�1 (p)

�1=(��1)
:

The integral of the thus obtained vacancy function v1 (p) over
�
p; p
�
w.r.t. d� (p) must equal v1,

which yields a relationship between C and v1. It is now clear from the last two equations that

the only thing that is jointly determined by the pair of scale parameters M and C is the unit of

measurement of vacancies (i.e. the scale of v). In other words, we have to normalize either C,M , or

v1 in the absence of outside information on any of those quantities. We choose the normalization

C = 1=�.

5.4 Simulating an Expansion

[IN PROGRESS]

6 Conclusions

Our characterization of the dynamics of the BM model opens the analysis of aggregate labor mar-

ket dynamics as a whole potential new �eld of application of search/wage-posting models. So
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far, our analysis of non-stationary equilibrium in wage posting models has been limited to tran-

sitional dynamics. Our next objective is to characterize the rational expectations equilibrium of

the same economy in the presence of aggregate productivity shocks. The familiar hurdle arises: a

key state variable for individual policies is the evolving distribution of wage o¤ers and payments,

an in�nitely-dimensional object. We have proposed an approach to resolve this problem and we

will pursue it for this extension too. More troubling is the tension between �rms� commitment

to contract o¤ers (the �posting�part of the model) and the need for �rms to adapt to a stochas-

tically evolving environment. We are currently pursuing what we deem to be a natural avenue,

the assumption that �rms o¤er and commit to wage policies that depend on two aggregate state

variables, unemployment and aggregate productivity. We plan to characterize equilibrium under

the Rank-Preserving restriction, and then to extend the RP proof illustrated in this paper to the

stochastic environment.
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Appendix

A Proof of Proposition 1

Consider the following generic dynamic optimization problem:

�t (`t; p) = max
fWsg

Z +1

t

��
p+ �1

Z +1

Ws

xdFs (x) + �Us + (r � �)Ws

�
`s

�Ws [�0us + �1 (1� us)Gs (Ws)]

)
e�r(s�t)ds (P)

subject to: _̀s = �
�
� + �1F s (Ws)

�
`s + �0us + �1 (1� us)Gs (Ws)

`t given:

By the optimality principle, a solution to (P) coincides with a solution to the contract posting problem (11)

over [t;+1) provided that the initial condition for `t in (P) is set at the value taken on by `t along the

optimal path in the sense of the solution to problem (11).

The proof of Proposition 1 involves an application of Caputo�s (2003) comparative dynamic results.14 In

order to apply those results we let W ?
t (`t; p) denote the closed-loop optimal control to problem (P), and we

also take up Caputo�s (2003) notation Dxy [W ?
t (`t; p) ; (`t; t; p)] for the (x; y) element of the Hessian matrix

of the primal-dual problem associated with (P) (see Caputo, 2003, equations 14-23 and Theorem 2).

We begin by establishing two intermediate results, from which the proposition will follow.

Lemma 1 Along the optimal path, for all t � 0:

@W ?
t

@p
(`t; p) � 0 and

@2�t
@p@`t

(`t; p) > 0:

Proof. We apply Theorem 2 in Caputo (2003), which is a statement of the second-order
necessary condition for the primal-dual problem corresponding to (Pa). That second-order
condition implies, inter alia, the following:

�Dpp [W ?
t (`t; p) ; (`t; t; p)] �

@W ?
t

@p
� @

2�t
@p@`t

� [�1ft (W ?
t ) `t + �1 (1� ut) gt (W ?

t )] � 0: (42)

Thus @W ?
t =@p has the same sign as @

2�t=@p@`t.
Application of the Dynamic Envelope Theorem (e.g. Caputo, 1990) next establishes that:

@�t
@p

(`t; p) =

Z +1

t

`se
�r(s�t)ds;

implying:
@2�t
@p@`t

(`t; p) =

Z +1

t

@`s
@`t

e�r(s�t)ds: (43)

14Although problem (P) is nonautonomous, it can be reexpressed as an autonomous problem by treating
time as an additional predetermined state variable � s such that _� s = 1 and � t = t. This is the generic type
of problem analyzed by Caputo (2003).
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The proof of the proposition is then completed by establishing the following:

Claim: @`s=@`t > 0 for s � t along the optimal path.
To prove this claim, we go back to the law of motion of `s along the optimal path which is

given by:

_̀
s = �

�
� + �1F s (W

?
s (`s; p))

�
`s + �0us + �1 (1� us)Gs (W ?

s (`s; p)) :

Di¤erentiation w.r.t. `t yields:

@ _̀s
@`t

=

�
�
�
� + �1F s (W

?
s )
�
+ [�1fs (W

?
s ) `s + �1 (1� us) gs (W ?

s )] �
@W ?

s

@`s

�
� @`s
@`t

� 	s (W ?
s ; `s) �

@`s
@`t

:

Given the initial condition @`s=@`t = 1 at s = t, the di¤erential equation above can be rewritten
as:

@`s
@`t

= exp

Z s

t

	x (W
?
x (`x; p) ; `x) dx > 0: (44)

�

Lemma 1 is not su¢ cient to establish that the RP property must hold in equilibrium: for that we need

to determine how the optimal W ?
t responds to di¤erences in the state variable, i.e. �rm size (`t). This is

what the next proposition is about.

Lemma 2 Along the optimal path, for all t � 0:

@W ?
t

@`t
(`t; p) � 0 and

@2�t
@`2t

(`t; p) > 0:

Proof. We apply Theorem 2 in Caputo (2003) again, which also implies:

�D`` [W ?
t (`t; p) ; (`t; t; p)] �

@W ?
t

@`t
�
�
�1ft (W

?
t ) �

�
@�t
@`t

�W ?
t

�
+
@2�t
@`2t

� [�1ft (W ?
t ) `t + �1 (1� ut) gt (W ?

t )] + (r � �)
�
� 0: (45)

Next, the Euler equation for problem (P) (which can also be viewed as one of the envelope
conditions for the HJB equation associated with (P); see e.g. Caputo, 2003) writes down as:15

@2�t
@`t@t

+
@2�t
@`2t

� _̀t =
�
r + � + �1F t (W

?
t )
� @�t
@`t

� p��1
Z +1

W?
t

xdFt (x)� �Ut� (r � �)W ?
t : (46)

Di¤erentiating w.r.t. `t along the optimal path yields:

@

@t

@2�t
@`2t

+
@

@`t

@2�t
@`2t

� _̀t �
�
� + �1F t (W

?
t )
� @2�t
@`2t

+ [�1ft (W
?
t ) `t + �1 (1� ut) gt (W ?

t )]
@W ?

t

@`t
� @

2�t
@`2t

=
�
r + � + �1F t (W

?
t )
� @2�t
@`2t

� �1ft (W ?
t )
@W ?

t

@`t
�
�
@�t
@`t

�W ?
t

�
� (r � �) @W

?
t

@`t
:

15Note that @�t=@`t is the shadow joint value to the �rm and the worker of the marginal match in the
speci�c �rm considered, which coincides with �t in the main text.
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Rearranging:

d

dt

@2�t
@`2t

=
�
r + 2� + 2�1F t (W

?
t )
� @2�t
@`2t

� @W
?
t

@`t
�
�
�1ft (W

?
t ) �

�
@�t
@`t

�W ?
t

�
+
@2�t
@`2t

� [�1ft (W ?
t ) `t + �1 (1� ut) gt (W ?

t )] + (r � �)
�
; (47)

which can be integrated as:

@2�t
@`2t

=

Z +1

t

@W ?
s

@`s
�
�
�1fs (W

?
s ) �

�
@�s
@`s

�W ?
s

�
+
@2�s
@`2s

� [�1fs (W ?
s ) `s + �1 (1� us) gs (W ?

s )] + (r � �)
�
� e�

R s
t (r+2�+2�1Fx(W

?
x ))dxds � 0;

where the positive sign follows from (45). Lemma 2 then follows from (45) again, the positive

sign of @2�t=@`2t just established and the fact that @�t=@`t�W ?
t > 0 (which is directly implied

by the �rst order condition for problem (P) and otherwise re�ects the fact that any given �rm

makes a positive pro�t on its marginal worker). �

We are now in a position to complete the proof of Proposition 1. Going back to the law of motion of `t
along the optimal path for a given �rm type p:

_̀
t = �

�
� + �1F t (W

?
t (`t; p))

�
`t + �0ut + �1 (1� ut)Gt (W ?

t (`t; p))

and di¤erentiating w.r.t. p, we obtain:

@

@t

d`t
dp

=

�
�
�
� + �1F t (W

?
t )
�
+ [�1ft (W

?
t ) `t + �1 (1� ut) gt (W ?

t )] �
@W ?

t

@`t

�
� d`t
dp

+ [�1ft (W
?
t ) `t + �1 (1� ut) gt (W ?

t )] �
@W ?

t

@p

� 	t (W ?
t ; `t) �

d`t
dp
+ [�1ft (W

?
t ) `t + �1 (1� ut) gt (W ?

t )] �
@W ?

t

@p
; (48)

which can be integrated as:

d`t
dp

=
d`t
dp

����
t=0

� e
R t
0
	x(W

?
x ;`x)dx +

Z t

0

[�1fs (W
?
s ) `s + �1 (1� us) gs (W ?

s )] �
@W ?

s

@p
� e
R t
s
	x(W

?
x ;`x)dxds;

which is positive from Lemma 1 and the assumption about the initial condition. Firm size `t (p) is thus
increasing in p throughout, which proves the proposition as:

dW ?
t

dp
=
@W ?

t

@p
+
@W ?

t

@`t
� d`t
dp
; (49)

where all terms are positive from the result above and Lemmas 1 and 2. �

B Proof of Proposition 2

In this appendix we only prove that a steady-state solution for r not too large is necessarily RP. Uniqueness

is established by construction later in the main text. Also in this proof we take up some of the notation

introduced in Appendix A and drop all time subscripts when alluding to steady-state quantities.
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The steady-state version of (48) writes as:

d`

dp
=
�1f (W

?) `+ �1 (1� u) g (W ?)

	 (W ?; `)
� @W

?

@p
:

Substitution into (49) yields (using the de�nition of 	(�)):

dW ?

dp
= �� + �1F (W

?)

	 (W ?; `)
� @W

?

@p
:

Showing that 	(W ?; `) � 0 is therefore necessary and su¢ cient to prove the proposition (as @W ?=@p � 0

from Lemma 1 in Appendix A). This is what we now do.
Writing (47) in steady-state, we obtain:

@2�

@`2
� @W

?

@p
=
@2�

@p@`
�
�
@W ?

@`

�2
� �1f (W

?) `+ �1 (1� u) g (W ?)

r + 2� + 2�1F (W ?)
:

Substitution into (45) (written in steady-state) yields:

@W ?

@p
� �1f (W ?) �

�
@�

@`
�W ?

�
+
@2�

@p@`
�
�
@W ?

@`

�2
� [�1f (W

?) `+ �1 (1� u) g (W ?)]
2

r + 2� + 2�1F (W ?)
+ (r � �) @W

?

@p

=
@2�

@`@p
� @W

?

@`
� [�1f (W ?) `+ �1 (1� u) g (W ?)] : (50)

Now substituting (44) into (43) and time-di¤erentiating leads to:

@

@t

@2�t
@p@`t

= �1 + (r �	t)
@2�t
@p@`t

;

so that in steady state:
@2�

@p@`
=

1

r �	 : (51)

First note that from Lemma 1, which establishes that @2�t=@p@`t > 0 throughout in a dynamic equilibrium,
the only consistent steady-state solution thus has 	 < r. Then once again substituting into (50) and
rearranging yields the following quadratic equation in 	:

	2 � [r +A (r + 2�)]	��(r +�) + rA (r + 2�) = 0; (52)

where � := � + �1F (W ?) and A := @W?

@p �
�
r � �+ �1f (W ?) �

�
@�
@` �W

?
��
. As r ! 0, (52) has one strictly

positive and one strictly negative root (the product of which equals ��2), the consistent one being the latter

from the remark after Equation (51) above. Because all the coe¢ cients of (52) are continuous functions of

r, so are its roots, which proves the proposition. �

C Computation of RPE with Endogenous Vacancies

To compute a dynamic equilibrium with endogenous vacancies, we proceed as follows:
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Step 0. Guess an initial path of vacancies in each �rm,
n
v
(0)
t (p)

o
t�0;p2[p;p]

, for example, a constant path

v(0)(p). We start with i = 0.

Step 1. Given
n
v
(i)
t (p)

o
t�0;p2[p;p]

with i = 0 and the (given) state of the economy at time 0, construct

v
(i)
t =

R p
p
v
(i)
t (p) d� (p) and compute the time path of unemployment from:

_u
(i)
t = �

�
1� u(i)t

�
�m

�
u
(i)
t + �

�
1� u(i)t

�
; v
(i)
t

�
� u

(i)
t

u
(i)
t + �

�
1� u(i)t

� ;
and deduce the time paths for contact rates, �(i)1t = ��

(i)
0t = m

�
u
(i)
t + �

�
1� u(i)t

�
; v
(i)
t

�
=
�
u
(i)
t + �

�
1� u(i)t

��
for t � 0.

Next construct the time path for the sampling distribution: �(i)t (p) =
R p
p
v
(i)
t (x)

v
(i)
t

d� (x) and use all those

initial guesses in the RHS of (33) to solve for the implied time path of �rm sizes,
n
L
(i)
t (p)

o
t�0;p2[p;p]

.

Step 2. Use the time paths obtained at Step 1 to substitute in the RHS of (35) and (36), and solve

the resulting system of PDEs for
n
�
(i)
t (p) ; �

0 (i)
t (p)

o
t�0;p2[p;p]

. This is achieved using a solution algorithm

similar to the one described in Moscarini and Postel-Vinay (2008).

Step 3. Finally solve (34) for vacancies:

v
(i+1)
t (p) = c0 �1

 
�
(i)
t (p)

v
(i)
t

 
�
(i)
0t u

(i)
t + �

(i)
1t

Z p

p

L
(i)
t (x) d� (x)

!!

and check consistency with the initial guess (i.e. v(i+1)t (p) �close to� v(i)t (p) for all (p; t). If inconsistent,

start over at step one using
n
v
(i+1)
t (p)

o
t�0;p2[p;p]

as an initial guess.

D The Case of Myopic Workers: � = +1

If workers are (in�nitely) impatient, they only care about current wages and the �rm�s original problem
simpli�es to:

�?0 (p) = maxfwtg

Z +1

0

(p� wt)Lt (p) e�rtdt (53)

subject to: _Lt (p) = �
�
� + �1F t (wt)

�
Lt (p) +

q (p)

N
(�0ut + �1 (1� ut)Gt (wt)) ; (54)

which has one less state variable (Vt (p)) than the original problem (1). (Readers will pardon the notational

abuse whereby F (�) and G (�) now take wt, rather than Vt, as an argument.)
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Denoting the costate associated with Lt (p) (i.e. the �rm�s shadow value of the marginal worker) as
�t (p), the optimality conditions for (53) write down as:

1 = �t (p)�
�
�1ft (wt (p)) + �1

q (p)

NLt (p)
(1� ut) gt (wt (p))

�
(55)

_�t (p) =
�
r + � + �1F t (wt (p))

�
�t (p) + wt (p)� p; (56)

lim
t!+1

e�rt�t (p) = 0: (57)

Now focusing on RPE�s, where (1� ut) gt (wt (p)) = NLt (p) ft (wt (p)) =q (p) = NLt (p) 
 (p) =w
0
t (p), the

�rst order condition (55) becomes:
w0t (p) = 2�1' (p)�t (p) : (58)

Substitution into (56) delivers the following PDE in wt (p):

_w0t (p) =
�
r + � + �1� (p)

�
w0t (p) + 2�1' (p) (wt (p)� p) : (59)

This has a simple time-invariant solution, which is rank preserving (it is the customary steady-state wage
equation in the BM model with heterogeneous �rms):

w1 (p) = p�
�
r + � + �1� (p)

�2 Z p

p

dx�
r + � + �1� (x)

�2 � �p� w1 �p�� : (60)

This time-invariant solution satis�es the RP property and the optimality conditions (55) - (57). It is therefore

an RPE, in which all �rms jump right on to the new steady-state wage policy after a shock. Firm sizes then

evolve according to (17) and the cross-section distribution of wages also gradually shifts toward its new

steady-state shape as labor gets reallocated between �rms.
The model can be closed by assuming the free-entry condition p = w. Under this assumption, wt

�
p
�
=

p = w for all t. To show that the invariant solution is unique, integrate equation (59) between p and p:Z p

p

_w0t (x) dx = (r + �)
�
wt (p)� wt

�
p
��
+ �1

Z p

p

� (x)w0t (x) dx+ 2�1

Z p

p

' (x) (wt (x)� x) dx:

Integrating by parts the middle term on the RHS yields (using dw=dt = 0):

_wt (p) =
�
r + � + �1� (p)

�
wt (p)�

�
r + � + �1�

�
p
��
p+ 3�1

Z p

p

wt (x)' (x) dx�
Z p

p

x' (x) dx;

and

�wt (p) =
�
r + � + �1� (p)

�
_wt (p) + 3�1

Z p

p

_wt (x)' (x) dx:

We now establish that the invariant distribution is the unique solution, so the equilibrium jumps right away
to the new steady state. Since _wt (p) is di¤erentiable in p, there exists p̂ > p such that _wt (p) preserves the
sign for p 2

�
p; p̂
�
. If this sign is zero, _wt (p) = 0 for all p: we have the stationary solution. If it is weakly

positive with strict inequality on a set of positive measure, then from the above equation �wt (p) > 0. But
then _wt (p) rises and becomes even more positive on some set of p�s. By induction, _wt (p) and thus wt (p)
grow unbounded, ultimately make pro�ts negative, and cannot converge to the new steady state. By the
same reasoning, if _wt (p) � 0 for all p 2

�
p; p̂
�
with strict inequality on a set of positive measure, then wt (p)

grows unbounded below on some set of productivities, violating the minimum wage requirement and any
reservation wage. Using the entry condition, wages are

wt (p) = p�
�
r + � + �1� (p)

�2 Z p

p

dx�
r + � + �1� (x)

�2 :
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