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Abstract

This paper analyzes an urn–ball matching model in which workers decide
how intensively they sample job openings and apply at a stochastic number of
suitable vacancies. Equilibrium is not constrained efficient; there is excessive
job creation and search intensity can be too high or too low. Moreover,
an inefficient discouraged–worker effect among homogenous workers emerges
under adverse labor market conditions. The model is then calibrated to the
U.S. economy. Unlike previous coordination–friction economies with fixed
search intensity, the model with variable search intensity is quantitatively
consistent with the relations between unemployment, vacancies and the job–
finding rate. It also exhibits an amplification of productivity shocks which is
of the same magnitude as in the data.
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1 Introduction

Search and matching models are widely used to address various labor market phe-

nomena, such as unemployment, worker and job flows, and wage dispersion.1 A large

portion of the literature utilizes the idea of an aggregate matching function which

maps the stocks of searching workers and firms into the flow of new matches. Despite

of its modeling advantages, the reduced–form matching function suffers from two

drawbacks. One is its inability to deal with heterogeneity convincingly. Of course,

the foremost purpose of this function is to abstract from any explicit source of fric-

tions (including heterogeneity) to describe the implications of costly trading in the

labor market with a minimum amount of complexity. Yet, many important issues

(for example, the pattern of skill premia) require an explicit analysis of how hetero-

geneity affects labor market outcomes.2 The other drawback is that a reduced–form

matching function is, by construction, invariant to policy. Again a more explicit

model of frictions is needed to answer the question how policy affects the matching

relationship (see also Lagos (2000) and Shimer (2007a)).

There is a large literature on microeconomic foundations behind the aggregate

matching function; see section 3 of Petrongolo and Pissarides (2001) for a survey.

One such foundation rests on coordination frictions; early contributions are Butters

(1977), Hall (1977) and Montgomery (1991), more recent ones are Burdett, Shi, and

Wright (2001), Julien, Kennes and King (2000, 2006) and Albrecht, Gautier, and

Vroman (2006). The key idea is simple: since workers do not coordinate their ap-

plication decisions and firms do not coordinate their job–offer decisions, some firms

end up with no applications while others get many, and some workers obtain sev-

eral job offers while others have none. So at the end of every period, unfilled jobs

and unemployed workers coexist. These models give rise to well–behaved aggregate

1See Rogerson, Shimer, and Wright (2005) for a survey. From a quantitative perspective,

search and matching models have been successful in describing the relation between unemployment,

vacancies and the worker flows between employment and unemployment (see e.g. Blanchard and

Diamond (1989)). They are less successful in generating the observed magnitude of fluctuations

of the vacancy–unemployment ratio (Shimer (2005)) and the observed amount of wage dispersion

(Hornstein, Krusell, and Violante (2006)).
2There is a number of papers utilizing reduced–form matching functions in models with het-

erogenous jobs or heterogenous skills (e.g. Acemoglu (2001) and Albrecht and Vroman (2002)).

But these models must rest on ad–hoc assumptions on how workers and jobs of different types are

matched.
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matching functions which typically have constant returns in economies with a large

number of workers and jobs.

Still there are at least two open issues with coordination–friction models. The first is

that search intensity is typically constant. Although it is straightforward to include

variable search intensity in standard search models with exogenous matching func-

tions (see Chapter 5 of Pissarides (2000)), it is a less obvious matter in economies

where matching frictions result explicitly from coordination problems. An exception

is the model of Albrecht, Gautier, and Vroman (2006) where workers send multiple

applications; in Section 5.1 of their paper they discuss what happens if applica-

tions are costly and workers decide about the optimal number. However, because of

the discrete–choice nature of this problem, there can be multiple equilibria and the

problem is analytically intractable. Also, it is not clear if the number of applications

is an appropriate measure for “search intensity”. Chance plays an important role

in the search for jobs; some workers who search hard may simply be unlucky, find

few suitable job openings and send few applications. Others who spend less time

on search, may notice a larger number of adequate job openings and send more ap-

plications. The second open issue is quantitative: can coordination–friction models,

when reasonably calibrated to long–run averages, match the Beveridge curve and

the relation between the vacancy–unemployment ratio and the job–finding rate?3

This paper is an attempt to fill these gaps. The first contribution of the paper is

theoretical. I analyze an urn–ball matching model in which workers decide about the

rate at which they sample job openings (“search intensity”) and apply at all suitable

jobs they observe. For a given search intensity, the actual number of suitable jobs

(and so the number of applications) is stochastic. The expected number of appli-

cations, however, increases proportionately with search intensity. As applications

are sent randomly, wages are determined by ex–post competition, according to the

same bidding game as in Julien, Kennes and King (2000, 2006) and Albrecht, Gau-

tier, and Vroman (2006). Workers with at least two offers receive the competitive

wage, those who have only one offer are paid the reservation wage. A key advantage

3Recently, Mortensen (2007) and Shimer (2007a) have analyzed microfoundations of the match-

ing function which are based on mismatch (instead of coordination frictions) and which generate

striking quantitative results along these dimensions. Julien, Kennes, and King (2006) examine a

coordination–friction model quantitatively, but their focus is wage dispersion, and not the Bev-

eridge curve and the elasticity of the matching function.
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of my model is that search intensity is a continuous choice variable, which makes

the model analytically tractable and allows for an explicit equilibrium characteri-

zation using first–order conditions. When labor market conditions are good, there

are many job openings per worker and all workers search with the same intensity.

With less favorable conditions, however, there are fewer job openings and there is

no symmetric equilibrium in pure search–intensity strategies. Instead, some workers

are active and search with a common positive intensity, while others remain inactive

and decide not to search at all. Thus, the model describes endogenous nonpartic-

ipation in an environment where all workers are equally productive and have the

same taste for leisure. When comparing these equilibrium outcomes to the choice

of a social planner, I obtain the following results: (i) nonparticipation is never con-

strained efficient; (ii) entry is always excessive, for the same reason as in Albrecht,

Gautier, and Vroman (2006), and (iii) search intensity can be too high or too low.

The second contribution of this paper is quantitative. In Section 3.5 I show that

existing coordination–friction models with fixed search intensity, when properly cal-

ibrated with a reasonable choice of the period length, are unable to account for the

observed slope of the Beveridge curve in the U.S. since 2001 and for the empiri-

cal elasticity of the matching function. Specifically, the Beveridge curve is much

too steep and the job–finding rate responds too little to variations in the vacancy–

unemployment ratio. In contrast, my model with variable search intensity and with

a reasonable choice of the intertemporal elasticity of substitution of leisure, performs

reasonably well along these dimensions. The Beveridge curve becomes flatter and

the elasticity of the job–finding rate increases substantially. Another finding is that

the model exhibits an amplification of productivity shocks which is about 10 times

as large as in Shimer’s (2005) calibration of the search and matching model. About

half of this difference is due to variable search intensity. The explanation for the

other half is that unemployment utility is much larger here than in Shimer’s cali-

bration; utility of the unemployed is decomposed into an income component and a

leisure component. The income component matches the benefit replacement ratio,

the leisure component follows from deliberate (and cautious) choices of leisure time

for employed and unemployed workers. The large value of unemployment utility

here is similar as in the calibration of the search and matching model of Hagedorn

and Manovskii (2007), though the calibration strategy is quite different from theirs.

Section 2 of the paper develops the theoretical model in a static setting. Section
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3 embeds the static model in a dynamic environment and analyzes its quantitative

implications, both positively and normatively. Section 4 concludes.

2 The static model

2.1 The setup

Consider a one–period economy with a large number M of identical workers and

a large number of N of identical firms, each creating one vacancy. The number of

workers is fixed, but the number of firms is determined from a free–entry condition.

I consider the limit where both M and N tend to infinity and where q = M/N , the

number of workers per job opening, is positive and finite. All agents are risk neutral

and aim to maximize their expected income. At the end of the period, unemployment

income is zero and employed workers produce p units of output (=job surplus). I

consider the following sequence of events.

Stage I Firms enter at marginal cost c(1/q) where c is a weakly increasing function

of the number of job openings per worker.

Stage II Every worker decides search intensity λ at cost k(λ), where k satisfies

k′(λ) > 0 and k′′(λ) ≥ 0 for all λ ≥ 0. If worker i searches with intensity λ, he

observes a suitable vacancy at firm j with probability λ/N and applies there.

These stochastic events are independent across i and j.

Stage III Each firm makes a wage offer to at most one applicant, rejecting all

others.

Stage IV Workers credibly reveal to firms how many offers they have, and firms

can simultaneously revise their initial bids.

Stage V Workers decide what offer (if any) to accept.

I impose the usual anonymity restriction that every worker treats all (identical)

firms equally (at stage V) and that every firm treats all workers equally (at stage

III).
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Two remarks are in order. First, the specification that marginal entry costs are not

constant is needed to limit entry activity in an equilibrium where some workers are

discouraged. The assumption can be justified, for example, by non–labor inputs

in fixed supply (e.g. land) whose prices increase in the number of active firms.

Alternatively, firms may differ in their setup costs, or the cost of a job advertisement

can increase with the total number of job openings. Second, search intensity is a

continuous variable which determines the likelihood λ/N that a worker observes a

suitable job opening at any firm. This likelihood is plausibly proportional to 1/N :

the worker samples a certain (random) segment of the labor market whose size

increases with search intensity λ. If the number of firms becomes larger, the size of

the sampled segment stays the same, but the probability that a given firm belongs

to this segment falls with factor 1/N .

In the large economy, the number of applications (per worker and per job) are

Poisson distributed. A worker with search intensity λ applies at exactly n firms

with probability
(

N
n

)(

λ
N

)n(

N − λ
N

)N−n
≈ 1

n!λ
ne−λ .

Conversely, if all workers search with intensity λ, a firm receives applications from

exactly m workers with probability

(

M
m

)(

λ
N

)m(

N − λ
N

)M−m
≈ 1

m! (λq)me−λq .

Thus the expected number of applications per worker is λ and the expected number

of applications per firm is λq.

The last three stages of the above game have the following solution. Firms offer the

reservation wage at stage III, revising the offer at stage IV only if the worker reveals

another offer, in which case Bertrand competition drives wage offers to the marginal

product. At the last stage, anonymity implies that workers randomize between equal

offers. In this respect, my model resembles those of Julien, Kennes, and King (2000)

and Albrecht, Gautier, and Vroman (2006) where workers with only one offers are

paid the monopsony wage and workers with multiple offers receive the competitive

wage. The setting of Julien et al. is the limiting case of my model where k(.) = 0 and

λ/N = 1, so every worker applies at all jobs. With λ < ∞, however, workers send

finitely many applications in expectation. In the model of Albrecht et al. all workers

send the same number of applications. Here, in contrast, the number of applications

is stochastic, reflecting the role of chance in the search process. Workers do not
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decide at how many firms they apply, but rather how intensively they sample job

openings. The model of Albrecht et al. also has an (irrelevant) wage posting stage

prior to the application stage where firms commit to a lower wage bound which

happens to coincide with the reservation wage. In this model such a wage–posting

stage makes little sense since applications are sent randomly.4

2.2 The matching function

Before solving the model, it is useful to consider the matching function of this model.

Assume, for the time being, that all workers decide the same search intensity λ at

stage II. For any worker i the probability to get an offer from firm j, conditional on

i applying at j, is5

z ≡ 1 − e−λq

λq . (1)

Hence, for any worker the probability to receive at least one offer (and thus to find

a job) is

∑

n≥1

1
n!λ

ne−λ
[

1 − (1 − z)n
]

= 1 − e−λz = 1 − e−
1−e−λq

q ≡ m(q, λ) . (2)

The matching rate for workers is declining in q (as usual) and strictly increasing in λ:

the more applications workers send on average, the more likely it is that every worker

receives an offer. Such a result is not obvious; in fact it does not hold in the model of

Albrecht, Gautier, and Vroman (2006) where the matching rate can be declining in

the fixed (non–stochastic) number of applications. The reason for their result is that

there are two coordination frictions with multiple applications. The first friction is

based on lack of coordination between workers: some firms receive no applications

while others receive multiple applications since workers do not coordinate at the

4Although there are no posted wages, this model falls into the class of “directed search” models

since both firms and workers direct their contacts after the application stage: firms decide what

worker type to approach at stage III, and workers decide what type of job to accept at stage V. Of

course, these issues are irrelevant in this model with identical agents, but they play a role when

workers or jobs are heterogenous. Moreover, an extension to heterogenous job types can also yield

a directed search aspect at stage II if workers decide how intensively they sample jobs of different

types.
5The derivation is standard: Prob(i gets offer from j | i applies at j)Prob(i applies at j)= z ·λ/N

is equal to Prob(j gets ≥ 1 appl.)Prob(i gets offer from j | j gets ≥ 1 appl.)= (1 − e−λq) · 1/M .

Solving yields z.
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application stage. The second friction is due to a lack of coordination between firms

at the job offer stage: some workers do not receive any offer, others have multiple

offers. Raising the number of applications mitigates the first friction but aggravates

the second one: it becomes more likely that multiple firms contact the same worker.

In my model the first effect always dominates so that the number of matches is

globally increasing in the common search intensity.

When λ → ∞, workers apply at all firms at stage I and the matching function is

mJ(q) ≡ 1− e−1/q, the same as in the model of Julien, Kennes, and King (2000). In

this limit only the second coordination friction is at work. In the model of Albrecht

et al. (2006), the matching function is mA(q, a) ≡ 1− [1− (1− e−aq)/(aq)]a when all

workers send a applications; again the matching function of Julien et al. emerges as

the special case a → ∞. For finite a, it may be that mA(q, a) > mJ(q), so matching

is more efficient with fewer applications. In my model, in contrast, matching is

always more efficient the more applications are sent, i.e. m(q, λ) < mJ(q) holds for

finite λ. It can also be shown that m(q, λ) < mA(q, λ); matching is more efficient

when all workers send the same number of applications a = λ than when they

randomize applications from a Poisson distribution with mean λ.

2.3 Equilibrium search intensity

Consider the search intensity decision of workers at stage II after firm entry, so the

worker–job ratio q is given. As discussed before, a worker obtains income p if he

receives two or more offers at stage III, but he ends up with zero income otherwise.

The probability to have two or more offers, conditional on n applications, is

1 − (1 − z)n − nz(1 − z)n−1 .

Hence, when the worker’s search intensity is λ, the probability to end up with at

least two offers is

∑

n≥2

1
n!λ

ne−λ
[

1 − (1 − z)n − nz(1 − z)n−1
]

= 1 − e−λz(1 + λz) .

When an individual worker in a large market decides λ, he takes z (the probability

to get an offer, conditional on applying) as given. Hence, every worker solves

max
λ≥0

Uz(λ) ≡
[

1 − e−λz(1 + λz)
]

p − k(λ) .
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This objective function is typically not concave; for many cost functions (e.g. linear)

it is convex at low values of λ and concave at higher values. Moreover, λ = 0 is

always a local maximum with Uz(0) = 0 and U ′
z(0) = −k′(0) < 0. If there is another

local maximum, it satisfies the first–order condition U ′
z(λ) = 0, which is

k′(λ) = λz2e−λzp . (3)

The right–hand side of this equation is hump–shaped and the left–hand side is

weakly increasing. For large enough productivity, this equation has two solutions,

of which the smaller one is a local minimum and the larger is a local maximum.

Consider first a pure–strategy equilibrium where all workers choose the same search

intensity λ∗ > 0. Combining (1) and (3) shows that λ∗ solves

k′(λ) =
(1 − e−λq)2e−

1−e−λq

q

λq2 p . (4)

The right–hand side of this equation is hump–shaped in λ and it equals zero at λ = 0

and at λ = ∞. Again, for p large enough, there are typically two solutions of this

equation. The smaller solution is irrelevant since it gives rise to a local minimum

of workers’ objective function. The larger solution corresponds to a local maximum

of Uz which constitutes a pure–strategy equilibrium, provided that workers do not

want to deviate to the local maximum at λ = 0, i.e. it must hold that Uz(λ
∗) ≥ 0.

If this condition is not satisfied, the unique symmetric equilibrium must have mixed

strategies where workers end up searching with different intensities.

To obtain an analytical result, Proposition 1 characterizes existence of an equilibrium

in pure strategies in the special case of linear search costs.

Proposition 1: Consider the search cost function k(λ) = k0λ and suppose that

p/k0 > ex/x and

q ≤ q ≡ Φ
(

k0e
x

px

)

k0e
x

px2 ,

where Φ(z) = ϕ is the inverse of z = (1 − e−ϕ)/ϕ, and x ≈ 1.79328 is the unique

positive solution of ex = 1 + x + x2. Then there exists an equilibrium of the stage

II subgame where all workers search with the same intensity λ∗ which is the larger

solution of equation (4).

Proof: Appendix.
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When there are sufficiently many jobs per worker (q ≤ q), all workers decide to

search with the same intensity. When this condition is violated, however, some

workers cease to search at all. Indeed, the symmetric equilibrium becomes one

in mixed strategies, where some “active” workers search with positive intensity λA

whilst others remain “inactive”, deciding λ = 0. Let α denote the probability to

play the active search strategy.6 All workers must be indifferent between these

strategies, so Uz(λA) = 0 holds. This requirement together with the first–order

condition U ′
z(λA) = 0 determine the job–offer probability z and search intensity for

active workers λA. Therefore, these two numbers depend on productivity p and on

the search cost function, but they are independent of market tightness. On the other

hand, z is related to the average search intensity λ = αλA according to equation

(1).7 As in Proposition 1, let λq = Φ(z) be the inverse of this relation. Thus, the

fraction of active searchers is α = Φ(z)/(qλA), which also shows that the number of

active searchers per job αq is independent of market tightness 1/q. Put differently,

any increase in job creation triggers a proportional increase in search activity.

In the special case of a linear search cost function k(λ) = k0λ, the following analytical

expressions are easily obtained:

λA = px2ex

k0
, z = k0e

x

px , α = Φ
(

k0e
x

px

)

k0e
x

px2
1
q , (5)

with constant x as in Proposition 1. In this case the conditions for a mixed strategy

equilibrium to exist are that α > 0 (which needs p/k0 > ex/x) and α < 1 (which

needs q > q). These results can be summarized as follows.

Proposition 2:

(a) Consider the search cost function k(λ) = k0λ and suppose that p/k0 > ex/x and

q > q. Then there exists an equilibrium of the stage II subgame where fraction

α ∈ (0, 1) of workers are active with search intensity λA and fraction 1− α of

workers are inactive.

6Clearly, there is another interpretation of this outcome as an asymmetric pure–strategy equi-

librium where fraction α of the population is active and the remaining fraction is inactive.
7Note that αλA/N = λ/N is the probability that a given worker i applies at a given firm j.

Hence λ is also the expected number of applications per worker and z = (1 − e−λq)/(λq) is the

probability of an offer, conditional on applying. The proof is the same as in footnote 5.
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(b) For an arbitrary search cost function, search intensity of active workers λA,

the job–offer probability z and the ratio of active workers per job αq are all

independent of market tightness 1/q in a mixed–strategy equilibrium. The job–

finding probability is α(1−e−λAz), which increases proportionately with market

tightness.

Although the existence results in Proposition 1 and 2(a) are derived for linear search

costs, I conjecture that results do not change qualitatively for an arbitrary convex

cost function: all workers are active with the same search intensity when the labor

market is tight (small q), whilst some workers are “discouraged” when labor market

prospects are less favorable from workers’ perspective (large q). This conjecture has

been confirmed in several numerical examples, including the parameterization used

in Section 3. So in the following q denotes the threshold value of the worker–firm

ratio separating an equilibrium with inactive workers from one without.

2.4 Free entry

To determine the endogenous number of jobs, note that a firm’s profit is p whenever

it has at least one applicant and when the chosen applicant has no other offer.

Otherwise profit is zero. When sufficiently many firms enter, there are no inactive

workers and all workers search with the same intensity λ∗(q). Expected profit is

then

π(q) =
[

1 − e−qλ∗(q)
]

e−
1−e−qλ∗(q)

q p , q ≤ q . (6)

The expression in squared brackets is the probability that the firm has at least one

applicant, and the second term is the probability that a randomly chosen applicant

has no other offer. For fixed λ∗, profit is strictly increasing in q: the larger the

worker–job ratio, the more likely it is that a firm finds an applicant and the less

likely it is that an applicant has multiple offers. When the effect of q on λ∗ is taken

into account, the overall impact of q on π is more complex since both the effect

of q on λ∗ and the one of λ∗ on π are generally ambiguous. However, numerical

experiments have shown that π is strictly increasing in q, at least for a linear search

cost function and an arbitrary choice of the parameter p/k0.

Conversely, when fewer firms enter, expected profit is

π(q) =
[

1 − e−Φ(z)
]

e−λAzp , q > q . (7)
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Again the first expression is the probability to receive at least one application (since

the number of applications at every firm is Poisson distributed with mean αλAq =

Φ(z)), and the second term is the probability that an active searcher gets no second

offer, conditional on having one (since the number of job offers for active searchers

is Poisson distributed with mean λAz). Importantly, expected profit in the range

q > q does not depend on the worker–firm ratio q, since z and λA are independent

of q. In contrast to standard search models, more entry does no reduce the chance

to find a worker since the number of active searchers increases proportionately with

the number of jobs. For the same reason, the chance that a contacted worker has

another other offer does not increase with the number of job openings.

The equilibrium worker–job ratio balances marginal entry cost to expected profit:

π(q) = c(1/q) . (8)

Whenever c is strictly increasing with appropriate boundary conditions, there is a

unique solution to this equation. To summarize, an equilibrium is a worker–firm

ratio q∗ solving equation (8) together with the following search behavior of workers:

1. If q∗ ≤ q, all workers search with common intensity λ∗ which is the larger

solution to equation (4).

2. If q∗ > q, share α of workers search actively with intensity λA, while all others

remain inactive.

2.5 Response to shocks

Suppose that job surplus p increases (for example, because productivity goes up or

unemployment income falls). For a given number of firms, such a shock has the

following effects on search behavior. In a pure–strategy equilibrium, the common

search intensity λ∗ increases unambiguously in p. This follows immediately from the

second–order condition which implies that marginal search costs are steeper than

marginal return of search in equation (4) at the equilibrium λ∗.8 In a mixed–strategy

equilibrium, with linear search costs, both the number of active workers α and their

8In this respect, the model differs from the one of Shimer (2004) where search intensity can also

fall with higher job surplus.
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search intensity λA are increasing in p (see equations (5)). Also the threshold value

q increases; thus it becomes more likely that all workers are active. Intuitively, a

larger job surplus raises the return to search, which unambiguously increases search

activity and search intensity in this model for given q.

What is the effect of the positive shock on job creation? The impact on firm profit

in the range q > q is unambiguously positive: a larger p raises the chance to find a

worker (because more workers become active) and raises output in a filled job. In

the range q ≤ q the effect is less clear–cut. Although the chance to find a worker

and job surplus go up again, the effect on the middle term in (6) is negative: the

higher search intensity implies that workers are more likely to get a second offer in

which case job profit would drop to zero. However, all my numerical experiments

confirm that the overall impact of p on firm profit is positive. Hence, an increase in

productivity raises the job–to–worker ratio 1/q.

Figure 1 shows how job creation responds to such an increase in p, both in a pure–

strategy equilibrium where all workers are active and in a mixed–strategy equilib-

rium where some workers are inactive, for different levels of the entry cost function.

In the regime without inactive workers (q ≤ q ≈ .55), the effect of a 20 percent

increase of p on q is relatively modest: q cannot fall by more than 10 percent, even

when entry costs are perfectly inelastic. In the regime with inactive workers, how-

ever, the reaction of q to an increase in p can be large: since π(q) is flat in the range

q > q, the elasticity of q with respect to p tends to infinity when the elasticity of c

with respect to 1/q tends to zero.

2.6 Efficiency

In the model of Albrecht et al. (2006), the decentralized equilibrium is inefficient

along two margins: entry is excessive and workers send too many applications.9 The

first inefficiency also occurs in this model, but the second one must be qualified. In

addition, another inefficiency emerges: it is never socially optimal that a fraction of

workers remains inactive. To obtain these results, consider the problem of a social

planner whose objective is to maximize total surplus per worker net of the costs of

9Albrecht et al. provide a mathematical proof for the first inefficiency, but refer to numerical

experiments for the second one.
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Figure 1: The response of the worker–firm ratio q to a productivity increase from

pL = 1 to pH = 1.2 with k(λ) = .1 · λ for two exemplary entry cost functions c1

(pure–strategy equilibrium) and c2 (mixed–strategy equilibrium).

search and entry, with respect to λ and q:

max
λ,q

m(q, λ)p − k(λ) −
∫ 1/q

0
c(v)dv .

Observe first that the planner’s objective is strictly concave in search intensity λ.

Thus, it is never optimal to let fraction α of workers search with positive intensity

λA while others are inactive. The planner rather prefers that all workers search with

the same common intensity αλA. Generally, the planner’s objective depends on a

distribution of search intensities, rather than a common intensity as it is written

here. However, it is easy to show that nonparticipation of a fraction of workers is

13



not optimal.10 The social optimum satisfies the following first–order conditions:

k′(λ) = e−
1−e−λq

q e−λqp , (9)

c(1/q) = e−
1−e−λq

q

[

1 − (1 + λq)e−λq
]

p . (10)

Consider first the entry margin for a given common search intensity λ of workers.

In the decentralized equilibrium, the worker–firm ratio equates profit as in (6) to

marginal entry cost c(1/q). On the other hand, the right–hand–side in the optimality

condition (10) is strictly increasing in q and smaller than firm profit π. Hence, the

worker–job ratio q is too small in the decentralized equilibrium; entry is excessive.

The explanation for the inefficiency is a similar “business–stealing effect” as it is

discussed in Albrecht et al. (2006, p. 877): the social benefit of an additional vacancy

falls short of the private benefit since the vacancy can attract workers from other

firms whose vacancies are then left unfilled. Put differently, wages do not internalize

the negative externality that an entrant exerts on incumbents who might lose all

their applicants to the entrant firm. The inefficiency could go away if the wage

for workers with one offer was greater than the monopsony wage (for example, if

there is Nash bargaining with an appropriate choice of worker bargaining power).

Obviously, in the limit λ → ∞ this business–stealing effect disappears and entry

becomes efficient, reconfirming the results of Julien et al. (2000).

Consider now the search intensity margin for a given worker–job ratio q ≤ q. Search

intensity in the decentralized equilibrium is the larger solution to equation (4). The

right–hand–side of the optimality condition (9) is declining in λ. Hence, equilibrium

search intensity λ∗ is too large if and only if the right–hand–side of (4) is smaller

than the right–hand–side of (9) at λ∗ which is the same as

(1 − e−λ∗q)2eλ∗q

λ∗q2 > 1 .

This inequality is true for all values of q > 0 and λ∗ ≥ 1, but it may be violated when

λ∗ < 1 and q is not too large. When all workers send more than one application on

average, search is socially excessive since workers impose a negative externality on

other workers: because firms cannot coordinate their job offers, some workers receive

10Proof: in the mixed–strategy equilibrium, net surplus is α(m(λA, αq)p − k(λA)), but if all

workers search with intensity αλA, surplus is m(αλA, q)p − k(αλA). Weak convexity of k implies

−αk(λA) ≤ −k(αλA), and concavity of 1 − e−x implies that αm(λA, αq) < m(αλA, q).
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no offers while others receive multiple offers. This externality is not internalized; on

the contrary, workers desire to receive two or more offers, so the incentive to send

a large number of applications is strong. Indeed, with linear search cost function,

λ∗ is always larger than 1.11 Hence in this case search is always excessive, but with

other examples search intensity can also be too low. For example, with k(λ) =

[1− (1− λ/2)−4]/40, q = 1 and p = 50, the equilibrium at λ∗ = .918 is smaller than

the social optimum at λ = .92. Also in the calibration exercise of Section 3, search

intensity turns out to be socially too low.

Proposition 3: A mixed–strategy equilibrium where fraction α ∈ (0, 1) of workers

searches actively with intensity λA is never socially optimal: welfare would increase

if all workers searched with common intensity αλA. A pure–strategy equilibrium

(q∗, λ∗) is not socially optimal since welfare can be raised by higher q at given λ∗.

Moreover when λ∗ ≥ 1, welfare can be raised by lower λ at given q∗.

3 Quantitative analysis

3.1 The dynamic model

I now embed the static model in a dynamic framework in discrete time t. The

environment is stationary, so I consider a steady state equilibrium and confine the

quantitative analysis below to comparative statics experiments. Existing jobs end

with exogenous probability δ per period. There is no search on the job, so q is the

number of unemployed workers per vacancy. Flow output in a filled job is p and flow

unemployment income is b. The latter term is fully interpreted as unemployment

benefits which are financed by (unmodeled) lump–sum taxes. Income from home

production or within–family transfers are ignored. Workers want to maximize their

expected utility

E
∞
∑

t=0

βt[wt + v(ℓt)] ,

where β is the discount factor, wt is wage or unemployment income in period t, and

v(ℓ) = k · (ℓ1−a − 1)/(1 − a) is flow utility of leisure, with 1 6= a ≥ 0 and k > 0.

11This follows from (3) and the second–order condition which implies that λ∗ ≥

argmaxλ[λz2e−λz] = 1/z > 1.
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Thus workers do not care about fluctuations in labor income, either because they are

risk neutral with respect to consumption, or because markets are complete. This

assumption is a convenient simplification in most of the search–theory literature.

Workers dislike variations in leisure, however, and parameter a measures the inverse

of the elasticity of intertemporal substitution of leisure. All jobs are full time,

and hours do not depend on productivity, so an employed worker consumes the

fixed amount of ℓe ∈ (0, 1) units of leisure. Leisure of an unemployed worker who

searches with intensity λ is ℓu = 1 − λ/A. Hence total time endowment per period

is normalized to one, and A is maximum search intensity per period. Within every

period, unemployed workers and vacant jobs are matched according to the same

process as in the static model. Unmatched agents continue search in the next period.

In the following, I restrict attention to a pure–strategy equilibrium where all non-

employed workers are active searchers (so they are classified as unemployed in the

usual definition). It is straightforward to characterize mixed–strategy equilibria with

inactive workers, but they do not deliver reasonable predictions in the numerical ex-

periments. Specifically, in comparison with U.S. data, inactivity (i.e. nonemployed

persons who want to work but do not search) becomes too volatile relative to unem-

ployment, and vacancies vary too little relative to nonemployment (unemployment

plus inactivity). Also the predictions of Proposition 2(b) are at odds with the ev-

idence. Hence the inactivity mechanism of this model can only be quantitatively

relevant when it is coupled with substantial heterogeneity.

As in the static model, there are jobs with high and low wages, depending on the

number of offers a worker holds in his hand when leaving unemployment. Although

low–wage earners may have an incentive to search for better–paid jobs, I assume

that employers can identify the current employment status of an applicant and that

employed workers can renegotiate when they obtain better offers later on. Under

these assumptions, employers will never offer their vacant job to an employed worker,

and search on the job does not take place.12 Let V and J j be the values of vacant

and filled jobs with wages wj in job status j = l, h. Suppose that flow costs of a

vacant job are c, independent of the number of active firms. The Bellman equations

12This assumption is similar as in Julien, Kennes, and King (2006). In their model, however,

low–wage earners search on the job, but only because of inter–firm productivity differentials, which

are absent here.
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are

V = −c + βV + (1 − e−λq)e−λzβ(J l − V ) ,

J l = p − wl + β(1 − δ)J l ,

Jh = p − wh + β(1 − δ)Jh .

In the first equation, firms gain only when they meet an applicant with no other

offer, which happens with probability (1 − e−λq)e−λz. Otherwise they either get no

application or they offer the job to a worker who has at least one other offer. In this

case, Bertrand competition drives the wage wh so high that the value of the filled

job is equal to the value of a vacant job, which is zero, so it follows that wh = p.

The free–entry condition V = 0 is

c = (1 − e−λq)e−λz β(p − wl)
1 − β(1 − δ)

. (11)

For workers, let U and Ej be the utility value when the current state is unem-

ployment or employment in a job of status j = l, h. Workers’ Bellman equations

are

U = b + βU + max
λ≥0

[

ϕ(λz)β(Eh − U) + v(1 − λ/A)
]

,

El = wl + v(ℓe) + βEl + βδ(U − El) ,

Eh = p + v(ℓe) + βEh + βδ(U − Eh) .

Here, ϕ(x) = 1 − (1 + x)e−x is the probability to find a high–wage job (that is, to

obtain two or more job offers) for a worker who receives x = λz offers in expectation.

Since workers with only one offer do not gain at the transition from unemployment

to employment, El = U must hold, which gives rise to the reservation wage equation

wl = b + v(ℓ∗u) − v(ℓe) + βϕ∗(Eh − U) , (12)

where ℓ∗u = 1 − λ∗/A is optimal leisure of an unemployed worker and ϕ∗ = ϕ(λ∗z∗)

is the equilibrium transition probability into high–wage jobs. The utility increase

at such a transition is

Eh − U =
p − b − v(ℓ∗u) + v(ℓe)
1 − β(1 − δ − ϕ∗)

. (13)

As in the static model, optimal search intensity equates marginal search costs to the

marginal return from search:

k
A

(

1 − λ
A

)−a
= λz2e−λzβ(Eh − U) . (14)
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A steady–state equilibrium is a vector (z∗, λ∗, wl∗, (Eh − U)∗, q∗) solving the five

equations (1), (11), (12), (13), and (14).

3.2 Calibration

There are nine parameters (β, δ, a, A, k, c, ℓe, b, p) to choose together with a reason-

able period length. Parameters are calibrated to match averages for the U.S. econ-

omy after December 2000, when the Bureau of Labor Statistics (BLS) began to

measure job vacancies with the Job Openings and Labor Turnover Survey. Because

the matching process requires that firms contact only one worker per period and

are committed to the offer during the period, a period length of one or two weeks is

appropriate. I deliberately specify a period to be a week long, as in the calibration

of Julien, Kennes, and King (2006), though most quantitative results are similar

with a two–week period. With an annual interest rate of 5%, this implies β = .9991.

Shimer (2007b) estimates an average monthly separation rate (EU flow) of 1.73%

for the period 01/2001–06/2007,13 so I set δ = .0038. The hazard rate of unem-

ployment (job–finding probability) in my model is h = 1 − e−λz. With an average

unemployment rate of 5.2% (between 12/2000 and 07/2007), this implies a mean

hazard rate of h = 6.93% (which is also consistent with Shimer’s estimation of the

UE flow), and so λz = .0718.

During the same period, the mean vacancy rate as reported by the BLS (i.e. vacancies

divided by the sum of employment and vacancies) is v = 2.43%. This yields a steady–

state unemployment–to–vacancy ratio of q = δ(1−v)/(hv) = 2.202. These numbers

for q and λz together with equation (1) yield λ = .0781 and z = .919. Hence, my

matching function calibrates U.S. data on unemployment and vacancies, provided

that an average unemployed worker sends one application every twelve weeks and

gets a job after after applying with a chance of 92%. The first number seems

too small and the second one too large. However, the inclusion of an (irrelevant)

mismatch parameter can help to circumvent this apparent oddness. Suppose that

a worker applies at a given firm with probability λ0/N , and that the firm observes

match–specific productivity after it receives the application. With probability µ

the worker fits the job, but with probability 1 − µ the worker’s productivity is

so low that job surplus is negative and thus does not result in a match. Then

13See http://robert.shimer.googlepages.com/flows
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a given worker sends to a given firm an “effective application” (one that results

in a match of positive surplus) with probability λ/N where λ = µλ0. Therefore,

in this interpretation, λ is the average number of effective applications per worker

whilst λ0 is the average number of actual applications. Similarly, λq is the average

number of effective applications per vacancy. The actual number of applications

and the probability to draw high match–specific productivity are irrelevant for the

quantitative analysis. All that matters are the effective application rates. Likewise,

parameter A is interpreted as the maximum average number of effective applications

that a worker can send in a given period.

Regarding preferences, I set a = 7.0 to yield an elasticity of intertemporal substi-

tution of leisure below the upper bound of .2 reported by Card (1994). Employed

persons work 50% of their time and unemployed persons search 25% of their time.

These numbers are arbitrary, though plausible choices. Given the above value of λ,

ℓ∗u = .75 implies that A = .313. Productivity is normalized to unity, and unemploy-

ment income b is set at 29% of the mean wage, which is the replacement ratio of

the U.S. in 1999 (see Table 2 of Nickell, Nunziata, and Ochel (2005)). The mean

wage is w = αwl + 1− α, where α = λze−λz/(1− e−λz) = .965 is the share of work-

ers in low–wage jobs. Equations (12), (13) and (14) together with the requirement

b/w = .29 are then four equations in the unknowns b, wl, Eh − U and k which

can be solved for the parameters b = .26 and k = .0591. The reservation wage is

then wl = .891 and the mean wage is w = .895. Finally, (11) delivers c = 3.396.

Note that vacancy flow costs are more than 10 times as large as in Shimer’s (2005)

calibration of the search and matching model. This is because wages are lower and

job surplus is considerably larger here.14 Alternatively, if wages were determined

through Nash bargaining in those matches where a worker holds only one offer, job

surplus (and so vacancy costs) would be much lower, but I decided not to follow

that route.

Finally, it can be checked that utility from search is positive at these parameter

values, so all unemployed are active searchers. Table 1 summarizes parameter choices

and their explanation.

14In Shimer’s calibration, the wage is only 1.25 percent below productivity and the value of a

filled job is as much as output of 1.7 weeks. In my calibration, the value of a filled job (which lasts

more than 200 weeks on average) is the equivalent of 22 weeks’ output.
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Parameter Value Explanation

β .9991 Annual interest rate 5%

δ .0038 Monthly EU flow 1.7%

p 1 Normalization

b .26 Replacement ratio 29%

a 7.0 IES of leisure below 0.2 (Card (1994))

ℓe .5 Plausible leisure share of employed persons

A .313 Plausible leisure share of unemployed persons (ℓu = .75)

k .0591 Unemployment rate 5.2% (via λ and h = 1 − e−λz)

c 3.396 Vacancy rate 2.43% (via q)

Table 1: Parameter choices.

3.3 The vacancy–unemployment relationship

How does the economy respond to a permanent, unanticipated change of produc-

tivity p or of the separation rate δ? Figure 2 shows BLS data on unemployment

and vacancy rates for the period 12/2000–07/2007 in comparison to the model’s

steady–state response when p varies about 10 percent (between .97 and 1.07). The

blue curve is the reaction of the baseline model which fits the data reasonably well,

though the curvature of the model’s Beveridge curve is too large. The red curve

shows the model’s reaction when search intensity is fixed; this would be the case in

the limit of a zero intertemporal elasticity of substitution of leisure (a → ∞). Gen-

erally, smaller values of this elasticity make the Beveridge curve steeper and larger

values make it flatter.15 Intuitively, at a low elasticity of substitution search intensity

increases only little when productivity goes up, so unemployment falls only mod-

erately relative to the increase in job creation. The reverse is true at larger values

of the substitution elasticity. At the baseline calibration, despite low intertemporal

elasticity of substitution, search intensity varies about 50 percent in response to a

10 percent productivity variation.16

15With parameter a in the interval [5, 9], the fit of the Beveridge remains reasonable, however.
16Shimer (2004) provides evidence against procyclical search intensity. He considers CPS data

and uses two measures of search intensity. One is the “probability to search” which is irrelevant

here since nonparticipation is not considered (all unemployed are searchers by definition). The

other is the “number of job search methods”. However, the variability of this measure is small
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Figure 2: Beveridge curves generated by the model when productivity varies between

.97 and 1.07 with variable search intensity (blue) and fixed search intensity (red).

The dots show monthly data for the U.S. from 12/2000 to 7/2007.

On the other hand, if there is a permanent shock to the replacement rate, the

vacancy rate and the unemployment rate move in the same direction. That is, the

Beveridge curve shifts outwards (inwards) in response to increases (decreases) of the

separation rate, which is also the case in the standard search and matching model.

Shimer’s data (see footnote 13) suggest however that the EU flow δ has moved only

little during the last 6 years.

The baseline calibration with variable search intensity not only delivers the cor-

rect slope of the Beveridge curve, it also performs well along two other dimensions.

One is the quantitative response of vacancies and unemployment to productivity

(Figure 7) and it is unclear how this number correlates with the actual search time and with the

number of applications, which are relevant here.
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shocks discussed in the next section. The other is the relationship between the

vacancy–unemployment ratio θ = 1/q and the job–finding probability (hazard rate

of unemployment) h = 1− e−λz. Empirical estimates of matching functions suggest

that the elasticity of h with respect to θ is in the range 0.3–0.5 (see Petrongolo and

Pissarides (2001), p. 393). In my model, this elasticity depends on the source of

the shock that drives variations in θ and h. However, a numerical calculation at

the calibrated average values yields d[ln(h)]/d[ln(θ)] = .4765 for changes in produc-

tivity and d[ln(h)]/d[ln(θ)] = .4772 for changes of the separation rate; hence, these

elasticities are about the same and fall into the range of plausible values. Figure 3

shows quarterly averages of monthly series for θ and h for the U.S. between 2001 and

2007, whilst the solid curve is the response of my model when productivity varies in

the same 10 percent range as before. Again the fit of the model is reasonable when

search intensity is variable, but not so much when it is fixed. In the latter case, the

elasticity is only d[ln(h)]/d[ln(θ)] = .08, clearly below the plausible range.

3.4 Response to productivity shocks

The model permits a quantitative response of the vacancy–unemployment ratio to

a productivity shock which is of the same order of magnitude as in the data. This

is already evident from Figure 3 which shows that a 10 percent variation in produc-

tivity induces a variation of the vacancy–unemployment ratio of about 100 percent.

The local elasticity at the target value p = 1 is d[ln(1/q)]/d[ln(p)] = 10.52 which is

more than six times as large as Shimer’s (2005) elasticity of 1.71 in his calibration of

the search and matching model. There are two explanations for this large difference.

One explanation is variable search intensity which is procyclical and explains about

half of the elasticity differential. In fact, with fixed search intensity the elasticity

drops from 10.52 to 6.18 (see also the red curve in Figure 3). The other explanation

is that flow utility of unemployment is much larger in the calibration of my model

than in Shimer’s calibration. More precisely, parameter b represents unemployment

benefits, whilst the flow utility of unemployment (the flow opportunity cost of em-

ployment) is b̂ = b+v(ℓu)−v(ℓe). At the parameter values of Table 1, unemployment

income is at 29% of mean earnings, but flow utility of unemployment is much larger,

at 83.5% of productivity and 93.2% of mean earnings. In Shimer’s calibration, un-

employment utility is arbitrarily set at 41 percent of the mean wage, and larger
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Figure 3: The relation between the vacancy–unemployment ratio and the job–

finding probability when productivity varies between .97 and 1.07 and search in-

tensity is variable (blue) and fixed (red). The dots show quarterly averages of

monthly data for the U.S. from Q1/2001 to Q2/2007. The job–finding prob-

ability (UE flow) was constructed by Robert Shimer (see Shimer (2007b) and

http://robert.shimer.googlepages.com/flows).

values of this number would magnify the economy’s response to productivity shocks

considerably.

In another approach to solve Shimer’s (2005) puzzle on the amplification of shocks

in search and matching models,17 Hagedorn and Manovskii (2007) choose a value of

unemployment utility which is even larger than mine (95.5% of productivity). They

17There is already a substantial literature on this issue, a large portion of which argues in favor

of some form of wage rigidity; see Hornstein, Krusell, and Violante (2005) and Yashiv (2007) for

surveys.
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pin down unemployment income and the worker bargaining power parameter (which

is absent here) to match two targets: the wage elasticity with respect to productivity

and a measure of vacancy costs. Hagedorn and Manovskii find that unemployment

income must be large and that the worker bargaining power parameter is small

which implies that worker surplus is small, too. My findings are similar in that

unemployment income is large and that the mean wage is close to the reservation

wage.18 Indeed, about 96% of workers earn the reservation wage. But my calibration

strategy is quite different from theirs: unemployment utility is decomposed into an

income component and into a leisure component. The income component matches

the replacement ratio for the U.S., whereas the leisure component follows from my

choice of ℓe and ℓu, which are plausible, albeit arbitrary numbers. ℓe = .5 is a com-

mon choice in the business–cycle literature. When I set ℓu = ℓe = .5, for example,

the elasticity of the vacancy–unemployment ratio with respect to productivity falls

to 1.37 (with variable search intensity) and to 1.17 (with fixed search intensity).

However, leisure consumption should be considerably larger for unemployed than

for employed persons. My choice of ℓu = .75 seems low already, and larger values

of this number would amplify the economy’s reaction to productivity shocks even

more.

3.5 Comparison with other models of coordination frictions

The bulk of the quantitative labor–search literature utilizes the approach of a black–

box matching function (mostly Cobb–Douglas). On the other hand, the literature on

microeconomic foundations of matching functions is by and large theoretical. Only

recently, Shimer (2007a) and Mortensen (2007) have developed mismatch models

which not only provide a novel structural foundation of the matching function,

but which also deliver good quantitative predictions along the dimensions discussed

in 3.3 above. However, models of unemployment which are based on coordination

frictions (e.g. Montgomery (1991), Burdett, Shi, and Wright (2001), Julien, Kennes,

and King (2000)) have not yet been analyzed with respect to their quantitative

18Hornstein, Krusell, and Violante (2005) point out that a large value of unemployment income

leads to an unrealistically large elasticity of unemployment with respect to unemployment income

(see also Costain and Reiter (2003)). This is not true in my model: a 10 percent increase of b

merely raises the unemployment rate by one percentage point (see Section 3.6 below).
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implications.19 I will now demonstrate that the basic versions of these models,

with homogenous agents, with a reasonable choice of the period length, and without

variable search intensity, are unable to match the correct slope of the Beveridge curve

and the right elasticity of the hazard rate with respect to the vacancy–unemployment

relationship.

The model of Albrecht, Gautier, and Vroman (2006) is general enough to encompass

the other coordination–failure models as special cases. In their model, every worker

sends a applications, randomly to homogenous firms posting the same wage. After

applications arrived, each firm makes a job offer to at most one worker, rejecting all

others. The model gives rise to the hazard rate

h = 1 −
[

1 − z(aq)
]a

, (15)

where z(aq) = (1 − e−aq)/(aq) is the probability to receive an offer conditional on

applying and q = M/N is the unemployment–vacancy ratio, with M and N large.

The large–economy model of Montgomery (1991) and Burdett, Shi, and Wright

(2001) is the special case a = 1, and the model of Julien, Kennes, and King (2000)

is the limit a → ∞. For given a (“fixed search intensity”), this matching func-

tion is not general enough to match both the unemployment rate and the vacancy

rate, since q is the only free parameter. However, the introduction of match–specific

productivity shocks enriches the model sufficiently to achieve this requirement (see

also Petrongolo and Pissarides (2001)).20 In Section 3.2 above, match–specific pro-

ductivity shocks were introduced to interpret the model’s calibrated parameters in a

reasonable way. The actual (average) number of applications sent is irrelevant; what

matters is the number of effective applications. In contrast, in the model of Albrecht

et al. the number of actual applications is a structural parameter, and match–specific

productivity is needed to match the model to the data. Again, assume that firms

learn what applicants are suitable after they receive the applications. Let µ be the

probability that a worker fits the job. With this modification, the probability to

receive a job offer conditional on applying is zµ(aq) = (1 − e−µaq)/(aq). Otherwise

the matching function (15) stays the same.

19An exception is Julien, Kennes, and King (2000), but their focus is wage dispersion.
20Alternatively, one could try to use the number of applications a as a free parameter. However,

to match mean unemployment and vacancy rates for the U.S. after Dec 2000 requires a = .0197, a

number which is not compatible with the model which requires a ∈ IN.
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I can now use the two parameters (µ, q) to target mean unemployment and vacancy

rates. This requires again q = 2.202, while µ depends both on the choice of the

period length and on the given number of applications. Given that workers send out

applications only once (at the beginning of the period) and that firms contact only

one applicant, a period length of one week is reasonable. With this choice I find that

µ = .0752 (a = 1), µ = .0383 (a = 2), µ = .0078 (a = 10), so the expected number

of effective applications a ·µ is nearly constant and about the same as the value of λ

in Section 3.2. Figure 4 shows the implied Beveridge curves induced by shifts in q,

both for a = 1 and for a = 100 which are practically identical. With a period length

of one week or two weeks, Beveridge curves are clearly too steep. A period length

of one month would yield a good fit to the data, but such a choice is implausible for

this model of coordination frictions; it would require that a firm can only contact

one worker per month and that unemployed workers send out applications only once

in every month. With a reasonably short period length, however, variable search

intensity (as measured by parameter a in this model) would make the Beveridge

curve flatter. Of course, this possibility is absent in the models of Montgomery

(1991), Burdett, Shi, and Wright (2001) and Julien, Kennes, and King (2000).

With fixed a, also the hazard rate responds to little to variations in the vacancy–

unemployment ratio. With a period of one week, I compute a local elasticity of

the job–finding rate with respect to the vacancy–unemployment ratio of .0805 (for

a = 1) and .0806 (for a = 100), clearly below range of plausible values. Again,

variable search intensity can help to increase this number.

3.6 Welfare and policy

Results from section 2.6. show that equilibrium is not efficient in general: entry

is excessive and search intensity can be too high or too low. The dynamic model

requires a separate analysis of the welfare issue. One important difference is that

there are unemployment benefits in the dynamic model which do not contribute

to social welfare.21 However, benefits induce a wedge between the private and the

social job surplus, which dampens the incentives to search for workers and firms.

21As mentioned before, benefits are financed by lump–sum taxes, so there is no net contribution

to welfare. Of course, matters would be different if workers were risk averse and markets were

incomplete.
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Figure 4: Beveridge curves generated by urn–ball matching models with a = 1

(solid) or a = 100 (dashed), when q varies from 1.101 to 3.303. The period length

varies between one week (blue), two weeks (red) and one month (green). The dots

show monthly data for the U.S. from 12/2000 to 7/2007.

This effect counteracts my previous findings that entry is excessive and that search

intensity is excessive when λ > 1.

Because of quasilinear preferences, the planner’s objective is to maximize a utilitar-

ian welfare function which adds up the discounted value of the income stream net

of entry cost and the discounted utility values of leisure. The recursive formulation

of this problem is
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W (u) = max
λ,q

{

u · v(1 − λ/A) + (1 − u) · [p + v(ℓe)] −
cu
q + βW (u′)

s.t. u′ = u + δ(1 − u) − m(q, λ)u

}

. (16)

Here u is the unemployment rate (the only state variable), W (u) is welfare when

current unemployment is u, and m(q, λ) is the matching function (2). I obtain the

following characterization of the social optimum.

Proposition 4: In the social optimum, the unemployment–vacancy ratio q and

search intensity λ are independent of the state variable u and satisfy the first–order

conditions

c = βe−λz[1 − (1 + λq)e−λq]S , (17)

k
A

(

1 − λ
A

)−a
= βe−λze−λqS , (18)

where z = (1 − e−λq)/(λq) and

S =
p + v(ℓe) − v(1 − λ/A)

1 + βδ − βe−λz(1 + λz) + βλe−λze−λq

is the social value of an employed person.

Proof: Appendix.

The intuition behind the optimality conditions is easy to explain. In (17), the term

e−λz[1−(1+λq)e−λq] is the same as d[m(q, λ)]/d[1/q], i.e. the number of new matches

of an additional vacancy. Hence the term on the right–hand side is the social return

of a vacancy which must be equal to marginal costs on the left–hand side. Similarly

in (18), the term e−λze−λq is the same as d[m(q, λ)]/d[λ], so the right–hand side is

the marginal social return of an additional unit of search intensity.

When there are no unemployment benefits, it is straightforward to show that entry

is excessive. Indeed, the free–entry condition (11), using (12) and (13), can be

expressed as

c = βe−λz(1 − e−λq)
p − b + v(ℓe) − v(ℓu)

1 + βδ − βe−λz(1 + λz)
. (19)

It follows immediately that the right–hand side of (17) is smaller than the right–

hand side of (19), at the same values of λ and q when b = 0. Since the right–hand
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side of (17) is increasing in q, the equilibrium level of q is smaller than the socially

optimal level of q (at given λ). Hence, for any given level of search intensity, there

is too much entry. Obviously, this result can change when b > 0 is large enough.

Table 2 compares the equilibrium at the benchmark calibration with the social opti-

mum. Search intensity is about 40 percent too low, and the vacancy–unemployment

ratio 1/q is more than 400 percent too large. The planner would choose about the

same level of the unemployment rate, but the desired vacancy rate would only be

a quarter of what it is in the data.22 Total welfare W (u) (which is expressed in

units the current output good) is about 20 percent below optimum. The last three

columns of the table show the three components of flow surplus: total output, to-

tal utility from leisure, and vacancy costs per period. Output, leisure utility and

vacancy costs are all smaller in the social optimum than in equilibrium.

λ q u(%) v(%) Welfare Flow Flow ut. Vacancy

output of leisure costs

Equilibrium .078 2.202 5.2 2.43 306.8 .948 -.591 .0802

Social opt. .109 10.02 5.59 .59 368.24 .944 -.593 .0189

Table 2: Equilibrium versus social optimum.

There are different possibilities how policy can raise welfare in this economy. An

increase in unemployment benefits reduces both search intensity and firm entry, so

the net welfare effect is generally ambiguous. However, at the baseline parameter-

ization, welfare rises with higher benefits. For example, a 10 percent increase in

benefits yields λ = 0.066 and q = 3.122. The unemployment rate increases to 6.19%

and the vacancy rate falls to 2.07%. Despite higher unemployment, welfare increases

by 3.5 percent. Another policy with similarly ambiguous qualitative effects is a tax

on profits. Quantitatively, however, the net effect of welfare is again positive. For

example, a 10 percent tax on profits reduces search intensity to λ = 0.0774 and

raises the unemployment–vacancy ratio to q = 2.473. The vacancy rate falls to

22Note again that excessive entry is due to a business–stealing effect which emerges because wages

do not internalize the negative entry externality on incumbent firms. Alternatively, if the low wage

wl was the outcome of Nash bargaining between worker and firm (instead of the monopsony wage),

entry would be efficient for some value of the worker bargaining power parameter. Technically, the

effect of Nash bargaining is the same as the one of a minimum wage discussed below.
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2.2%, the unemployment rate increases to 5.3%; nevertheless welfare increases by

2.6 percent.

Lastly, consider the impact of a binding minimum wage. Formally the effect of a

minimum wage is the same as an increase of worker bargaining power when wages in

low–wage jobs are the outcome of a bargain between the firm and the worker with

one offer. The minimum wage alters Bellman equations in that workers gain from a

transition into low–wage jobs. Solving these equations yields

El − U = 1
1 − β(e−λz − δ)

[

w − b − v(ℓu) + v(ℓe) − βϕ∗ p − w
1 − β(1 − δ)

]

, (20)

which is positive when w is a binding minimum wage greater than wl. Also the

value of a high–wage job changes to

Eh − U = 1
1 − β(e−λz − δ)

[

p − b − v(ℓu) + v(ℓe) − βλze−λz p − w
1 − β(1 − δ)

]

. (21)

Equilibrium search intensity changes from (14) to

k
A

(

1 − λ
A

)−a
= λz2e−λzβ(Eh − U) + ze−λz(1 − λz)β(El − U) . (22)

A steady–state equilibrium with a binding minimum wage w is a vector (z∗, λ∗, (Eh−

U)∗, (El − U)∗, q∗) solving the four equations (1), (20), (21), and (22) and the free–

entry condition (11) with w replacing wl.

Qualitatively, the minimum wage raises the search return for workers and lowers the

one for firms, so it takes a positive impact on λ and q, enhancing welfare unambigu-

ously. In the numerical example, even a minimum wage which is one percent above

the reservation wage of the laissez–faire economy has a substantial welfare effect.

With w = 1.01 ·wl = .9, I find that search intensity increases to λ = .0792 and that

q increases to 2.388. The vacancy rate falls to 2.23% and the unemployment rate

falls slightly to 5.18%, despite reduced entry. Total welfare increases by 2.3%.

4 Conclusion

This paper develops a model of coordination frictions with variable search intensity

in which equilibrium can be fully characterized by a simple set of first–order condi-

tions. Under bad labor market conditions, however, some workers cease to search.
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This phenomenon emerges without any heterogeneity in the workers’ productivities

or in their tastes for leisure. Such a “discouraged–worker effect” is not socially

desirable; the planner desires that all homogenous workers search with a common

intensity. But even under better labor market conditions, equilibrium is typically

inefficient, as there are too many vacancies and a suboptimal level of search inten-

sity. In the quantitative part of this paper, I argue that variable search intensity

improves the fit of coordination–friction economies. It makes the Beveridge curve

flatter and raises the elasticity of the matching function with respect to the vacancy–

unemployment ratio. It also helps to increase the economy’s quantitative response

to productivity shocks.

The following two extensions are left for future work. The first is the effect of

heterogeneity on search intensities. On the one hand, when there are jobs with

high and low productivities, it is interesting to know whether workers search too

hard for the good jobs and too little for the bad ones, and how much they diversify

their “search portfolio”. A similar issue is analyzed in Gautier and Wolters (2007).

On the other hand, when workers are endowed with different skills, it should be

understood how much search intensities between these groups differ, and what the

implications are for skill differences in wages and employment rates.

The second extension concerns the mechanism of wage determination. In many

search models, firms post wages (and are committed to these announcements) be-

fore workers send applications. In one strand of the literature, known under the

label “competitive search”, workers observe all wages and direct their search to spe-

cific wages. Equilibrium under competitive search is typically constrained efficient.

In urn–ball matching models, such results have been obtained when workers send

one application (Burdett, Shi, and Wright (2001)) or several applications (Kircher

(2007)). Kircher also proves that search intensity, as measured by the number of

applications, is constrained efficient. In my model, unlike competitive search, work-

ers do not observe all job openings; instead they decide how much time they spend

on sampling jobs and they apply at all jobs they find suitable. Thus search at the

application stage cannot be directed towards specific wages, though it may be di-

rected towards job types, as discussed in the previous paragraph. Hence, a variation

of this model with posted wage would rather resemble the random–search model of

Burdett and Judd (1983) than competitive search.
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Appendix

Proof of Proposition 1:

Consider some worker i and suppose that all other workers search with the same

intensity λ, so that the probability to get an offer conditional on applying is z(λ) =

(1 − e−λq)/(λq). The best–response of worker i is either at λi = 0 which gives rise

to utility Uz(0) = 0, or at the larger positive solution of (3) with z = z(λ), denoted

λi = R(λ). This positive solution exists if, and only if,

k0 ≤ max
λ′

[λ′z(λ)2e−λ′z(λ)p] = z(λ)e−1p ,

which can also be expressed as λ ≤ Φ(k0e/p)/q. Since z(λ) ≤ 1, this requires in

particular that p/k0 ≥ e. If worker i searches with intensity R(λ) > 0, substitution

of (3) into the objective function gives

Uz(λ)[R(λ)] = p
{

1 −
[

1 + R(λ)z(λ) + (R(λ)z(λ))2
]

e−R(λ)z(λ)
}

,

which is non–negative iff R(λ)z(λ) ≥ x ≈ 1.79328. Using (3) again, the inequality

z(λ) = k0e
R(λ)z(λ)

pR(λ)z(λ)
≥ k0e

x

px

is equivalent to R(λ)z(λ) ≥ x (so it is equivalent to Uz(λ)(R(λ)) ≥ 0) since ey/y is

increasing in y > 1 and since R(λ)z(λ) > 1 holds. Using the definition of z(λ) and

Φ, this inequality can also be expressed as

λ ≤ 1
qΦ

(

k0e
x

px

)

= λ .

Hence, for any λ ∈ [0, λ], the best response of worker i is at λi = R(λ) > 0.

Moreover, λ > 0 iff p/k0 > ex/x. An equilibrium in pure–strategies amounts to

finding a fixed point of λ∗ = R(λ∗) satisfying 0 ≤ λ∗ ≤ λ. Since R is continuous

and satisfies R(0) > 0 (from p/k0 > e), such a fixed point exists if R(λ) ≤ λ. But

by construction,

R(λ) = x
z(λ)

= px2

k0e
x .

Hence, R(λ) ≤ λ is equivalent to q ≤ q. 2
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Proof of Proposition 4:

As in section 7.2 of Rogerson, Shimer, and Wright (2005) it is straigtforward to

show that W (.) is affine–linear; it takes the form W (u) = w0 − S · u where S is

marginal social value of an employed worker. Differentiation of (16) with respect to

u together with the envelope theorem yields

S = p + v(ℓe) − v(ℓu) + c/q + βS(e−λz − δ) , (23)

with ℓu = 1 − λ/A. The first–order conditions for λ and q are

v′(ℓu)
1
A = βe−λze−λqS , (24)

c = βe−λz[1 − (1 + λq)e−λq]S . (25)

These conditions confirm that optimal λ and q do not depend on the state variable

u, so W (.) is indeed affine–linear. Both first–order conditions are the same as in

Proposition 4. The value S follows after substitution of (25) into (23) and solving

for S. 2
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